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Abstract

Temporal coherence (TC), the correlation of contents between ad-
jacent rendered frames, exists across a wide range of scenes and
motion types in practical real-time rendering. By taking advantage
of TC, we can save redundant computation and improve the perfor-
mance of many rendering tasks significantly with only a marginal
decrease in quality. This not only allows us to incorporate more
computationally intensive shading effects to existing applications,
but also offers exciting opportunities of extending high-end graph-
ics applications to reach lower-spec consumer-level hardware.

This course aims to introduce participants to the concepts of TC,
and provide them the working practical and theoretical knowledge
to exploit TC in a variety of shading tasks. It begins with an in-
troduction of the general notion of TC in rendering, as well as an
overview of the recent developments in this field. Then it focuses
on a key data structure – the reverse reprojection cache, which is the
foundation of many applications. The course proceeds with a num-
ber of extensions of the basic algorithm for assisting in multi-pass
shading effects, shader antialiasing, casting shadows and global-
illumination effects. Finally, several more general coherence topics
beyond pixel reuse are introduced, including visibility culling opti-
mization and object-space global-illumination approximations. For
all the major techniques and applications covered, implementation
and practical issues involved in development are addressed in detail.

In general, we emphasize “know how” and the guidelines related
to algorithm choices. After the course, participants are encouraged
to find and utilize TC in their own applications and rapidly adapt
existing algorithms to meet their requirements.

The version of the course notes you are currently reading was cre-
ated at October 7, 2010. The newest version of these course notes
can be downloaded from this URL.

Course Prerequisites

This course should give a computer graphics practitioner, student
or researcher the working and theoretical knowledge to implement
state-of-the-art temporal coherence techniques. The content of this
course is delivered by talks and course notes. Prerequisites in-
cldue knowledge of basic real-time computer graphics, such as pro-
grammable shading pipeline, model transformation, rasterization
and texture mapping. Experience in writing vertex and fragment
shaders is preferred.
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1 Introduction

One of the driving forces of computer graphics is to render physi-
cally correct images with rich visual effects. This usually requires
large scenes with highly detailed geometric models, as well as com-
putationally intensive shading work to be incorporated in a modern
rendering system. Real-time rendering has the conflicting goal of
creating a sequence of such images fast enough to still allow for
continuous animation and user interaction. Here a limit of at least
60 frames per second is considered as sufficiently smooth for the
human observer, which means the time available for one frame is
about 16 milliseconds. All calculations necessary to create a frame
have to fit into this time budget. This not only includes all the ren-
dering algorithms we are concerned with in computer graphics, but
may also contain the domain specific code of an application, artifi-
cial intelligence, input processing and sound rendering.

Although computer graphics hardware has made staggering ad-
vances in terms of speed and programmability, there still exist a
number of algorithms that are too expensive to be computed in this
time budget. A few important examples include physically correct
shadows, depth of field and motion blur effects, or even an ambient
occlusion approximation to the exact global illumination solution.
The situation becomes worse when these effects are combined with
large and complex scenes, in which the hidden geometry often con-
sumes a significant portion of render time but contributes nothing
to the final images.

One way to circumvent this hard time limit is to capitalize on tem-
poral coherence (TC) and avoid redundant computations over time.
TC is hereby defined as the existence of a correlation in time of
the output of a given algorithm. For example, in a scene rendered at
high frame rates, there is usually very little difference in the shading
over visible surfaces between two consecutive frames, and the ma-
jority of surfaces are mutually visible (see Figure 1). Therefore,
computing everything from scratch in every frame is potentially
wasteful. Exploiting the coherence between adjacent frames and
reusing of intermediate or final shading result can therefore reduce
the average shading cost of generating a single frame.

Figure 1: Temporal coherence that exists in a game-like scene.
Left: For a strafe-left movement the cache misses are shown in
green. Right: Plot of the percentage of pixels found in the cache
for each frame of the animation sequence.

In general, TC can be applied for achieving either of the following
goals:

• Acceleration: A given algorithm can be accelerated by refor-
mulating it as incremental in time, thereby amortizing the to-
tal workload over several frames. The output quality may be
marginally degraded but the overall speed improvement is of-
ten promising.

• Quality improvement: The results of a given algorithm can be
augmented by taking into account results computed in previ-
ous frames. By a slight increase in render time, the quality of
the result can often be significantly improved.

These goals have in common that for a drastic change in the input
some latency in the output may be introduced. In the acceleration
case this requires a major refresh in the previously computed re-
sults, which may cause a sudden drop of framerate. In the qual-
ity improvement case, this means that over several frames only an
approximate solution can be displayed before the algorithm con-
verges. Fortunately with relatively high framerates and careful al-
gorithmic designs, these problems can often be handled smoothly
and unnoticed by the viewer. In addition, ongoing animation may
also cause information from previous frames to be outdated. This
has to be accounted for in order to avoid temporal artifacts such as
after-images or tailing.

Aside from the fact that the redesign of algorithms to account for
TC can be challenging, special care has to be taken to fit these al-
gorithms to the massively parallel nature of modern graphics archi-
tectures.

In the following text we want to give a detailed discussion of var-
ious approaches that exploit TC in real-time rendering. We start
in Section 2 with a survey of were and how TC techniques have
been employed in computer graphics. Section 3 explains the gen-
eral theory behind the most commonly used data structure for ex-
ploiting TC in real-time rendering, the reverse reprojection cache.
This data structure, although ubiquitous in real-time rendering, is
often not enough to gain the maximum effect of TC. That’s why
many practical approaches also have intricate algorithms. We will
describe the most prominent ones in Section 4. Image space meth-
ods are not the only way to make efficient use of TC. Object space
approaches are widely used for visibility determination. We discuss
them in Section 5.

2 Background

The term frame-to-frame coherence was first introduced by Suther-
land et al. (1974) in his seminal paper “Characterization of Ten
Hidden-Surface Algorithms”, in which he describes various ver-
sions of coherence, like scan-line or area coherence that allow for
more efficient rendering.

In an early paper by Hubschman and Zucker (1981), frame-to-
frame coherence is investigated to accelerate visibility detection.
They analyse animation sequences for static scenes and a continu-
ously moving camera in scan-line rendering. From this they are able
to derive a number of geometrical constrains in visibility for the
case of closed, convex and non-intersecting polyhedra. Prediction
of changes in visibility become possible and therefore only those
parts of the scene need to be processed where a visibility change
may occur. Coorg and Teller (1996) build on this work by intro-
ducing a data structure that helps to predict imminent visual events.
TC allows them to maintain this data structure dynamically, only
containing the data relevant for the current view port.

2.1 Ray-Tracing

Especially in ray-tracing, a number of algorithms exist that make
use of information stored over time:

Badt Jr. (1988) introduced reprojection to accelerate ray-tracing for
animations. His forward reprojection algorithm uses object space
information stored from the previous frame. This allows him to ap-
proximate ray-traced animation frames of diffuse polygons. Adel-
son and Hodges (1995) later extend his approach to ray-tracing of
arbitrary scenes.

Adelson and Hodges (1992) also use frame-to-frame coherence not
in the temporal dimension, but to relate the two images of stereo-
scopic views when ray-tracing. They found that up to 95% of the



pixels of the left-eye view can be reused for the right-eye view by
reprojection.

Jevans (1992) and Davis (Davis, 1998; Davis and Davis, 1999) use
TC in ray-tracing for predefined animation sequences in similar
ways: They divide a given scene into an object-space grid. All vox-
els where objects move in/out/around at some point during the se-
quence are identified. Rays that pass through these changing voxels
have to be recalculated in all the frames where these changes occur.
While Jevans’ algorithm is formulated in a serial manner, Davis’
algorithm accelerates parallel ray-tracing on a distributed system
by rendering different sub-regions of the output image on different
nodes and employing TC locally on each node.

Havran et al. (2003a) use TC to reuse ray/object intersections in
ray casted walkthroughs. They do this by reprojecting and splatting
visible point samples from the last frame into the current, thereby
avoiding the costly ray traversal for more than 78% of the pixels in
their test scenes.

2.2 Image-Based Rendering

Many publications focus on using TC for replacing parts of a scene
with image-based representations: Gröller (1992) and Schaufler
(1996) reuse image data generated from previous frames. Replace-
ment of complex distant geometry with impostors allows them to
reduce rendering times.

Lengyel and Snyder (1997) employ frame-to-frame coherence to
guide factorization of a scene into multiple layers. Image warp-
ing is used to rerender layers over multiple frames. Differences in
perception of fore-/background objects, as well as differences in
the motion of objects are factors to redistribute rendering resources
adaptively. More rendering resources are spent for fast moving
foreground objects, which thereby gain in fidelity, while a slowly
changing background receives less rendering resources. They tar-
geted their implementation on a hardware termed Talisman (Tor-
borg and Kajiya, 1996) that natively supports rendering of layers.

Regan and Pose (1994) propose an address recalculation hardware
for head mounted displays. This hardware allows for orientation
viewport mapping after rendering, which minimizes latency caused
by head rotations. With this hardware they implement priority ren-
dering: The scene is divided into layers with increasing distance to
the eye. Layers that are farther away are updated less often than
nearer layers.

Leaving the concept of frame-based rendering behind, Bishop et al.
(1994) introduce frameless rendering, which heavily relies upon
TC for sensible output. Here each pixel is rendered independently
based on the most recent input, thereby minimizing lag. There is no
wait period till all pixels of a frame are drawn, but individual pixels
stay visible for a random time-span, until they are replaced with an
updated pixel. Note that this approach does not use the object co-
herency that is such an integral part of many polygon renderers. To
avoid image tearing pixels are rendered in a random order.

2.3 Image Warping

Another class of approaches that use TC is image warping. Here
images are used as a cache to be reused and warped into different
views. The most common approach to warping is to forward map
the individual pixels of the image into the new view and then splat
them with a Gaussian kernel.

Chen and Williams (1993) calculate in-between views by morph-
ing a number of reference images. Image morphing is defined as
the simultaneous interpolation of shape and texture. Two steps are

necessary: first, identification of correspondences between the two
images, resulting in a mapping and second, interpolation by blend-
ing the corresponding pixels. The first step is the more intricate
one, but in this special case of in-between views it can be resolved
by using the camera transformation between image spaces (forward
mapping).

McMillan and Bishop (1995) extend this to arbitrary viewing po-
sitions by an image warping approach. This technique is used in
stereoscopic displays with only two hyper-stereo reference images
as input. Mark et al. (1997) build on McMillan and Bishop’s image
warping algorithm to render a new view from two stored views. For
each view color and depth are stored. Both images are warped into
the new view to allow for small camera movements. Then the two
images are composited together to compensate for most disocclu-
sions. The authors report an increase in apparent rendering speed
of about one order-of-magnitude to regular rendering.

Shade et al. (1998) present two warping methods. The first is
for warping a sprite with depth information. The major problem
here is that backward mapping cannot be applied directly and for-
ward mapping may produce holes. The authors suggest therefore to
first forward map the displacements given by the depth information
from the sprite and then backward map these warped displacements.
Note that in the now possible backward mapping step reconstruc-
tion filters can be employed. This sprite approach works well for
planar or smoothly varying surfaces. For more complex surfaces
the authors propose a new data structure: the layered depth im-
age (LDI). Here each pixel may contain multiple depth and color
informations, allowing to deal with large parallax and general dis-
occlusions. An LDI can be rendered by splatting all pixels into the
output image using the over compositing operation.

Also in terrain rendering image based approaches have been used
together with TC. Chen et al. (1999) render the full-resolution ter-
rain mesh into an image sprite and use this sprite as a texture (em-
ploying projective texture mapping) for a low resolution terrain
mesh in subsequent frames. Each frame the error this produces
is measured and if too high the image sprite is recreated from the
view of the current camera. This unfortunately introduces uneven
frame rates, if the image sprite has to be recreated. Although this
approach was applied to terrains in the paper, it could also be used
for other geometry.

Qu et al. (2000) use image warping to accelerate ray-casting. The
idea is to warp the output image of the previous frame into the cur-
rent frame. Due to the warping, pixels may fall between the grid po-
sitions of the pixels of the current frame, therefore an offset buffer
is used to store the exact positions. Due to disocclusions, holes can
occur at some pixels. Here ray-casting is used to generate these
missing pixels. The authors propose to use an age stored with each
pixel, which is increased with each warping step to account for the
lower quality of pixels that have been warped (repeatedly). Upon
rendering a new output frame this age can be used to decide if a
pixel should be re-rendered or reused.

Simmons and Sequin (2000) introduce a mesh-based reconstruction
called a tapestry for dynamically sampled environments. It allows
the reuse of radiance values across views by reprojecting them into
the new view.

Stamminger et al. (2000) augment interactive walkthroughs (calcu-
lated by rendering hardware) with photorealistic results calculated
by an asynchronous process. This has the advantage that interac-
tivity of the walkthrough is not hindered by the processing time of
the high quality calculations. The differences between high quality
and interactive results are stored in so-called corrective textures and
applied to the scene objects with projective texturing. This has the
advantage that the TC of such scenes allows for lazy updates of cor-



rective textures. Additionally the texture resolution can be adapted
to the number of available samples and hardware texture filtering
can be used to resolve under- as well as oversampling.

Wimmer et al. (1999) accelerate the rendering of complex environ-
ments by using two different rendering methods for the near and
far field: The near field is rendered using the traditional rendering
pipeline, while ray casting is used for the far field. To minimize
the number of rays cast, they use a panoramic radiance cache and
estimate the horizon, to avoid to ray cast sky pixels. If an upright
viewer is assumed, finding the horizon can be solved by casting a
2d ray through a precomputed height field.

Walter et al. (1999) introduce the render cache. It is intended as an
acceleration data structure for renderers that are too slow for inter-
active use. The render cache is a point based structure, which stores
previous results, namely 3d coordinates and shading information.
By using reprojection, image space sparse sampling heuristics and
by exploiting spatio-temporal image coherence these results can be
reused in the current frame. Progressive refinement allows decou-
pling the rendering and display frame rates, enabling high interac-
tivity. Walter et al. (2002) later extend this approach with predictive
sampling and interpolation filters. Finally Velázquez-Armendáriz
et al. (2006) and Zhu et al. (2005) accelerate the render cache on
the GPU.

Smky et al. (2005) explore TC to speed up irradiance calculations
using a cache structure called anchor. The idea is to permanently
store and update (if needed) all the incoming radiance samples used
to estimate the irradiance of an irradiance record. Thereby they not
only accelerate the process, but also reduce temporal artifacts, like
flickering in methods that render each frame independently.

In a related approach, Gautron (2008) present a temporal caching
scheme for glossy global illumination: temporal radiance caching
of animated environments (camera, objects and light sources
move). They reuse part of the global illumination solution of previ-
ous frames by introducing temporal gradients, which estimate con-
tribution of a record within its lifespan.

3 Image-Space Real-Time Reverse Reprojec-
tion

In this section, we describe a simple and lightweight method – the
Reverse Reprojection Cache (RRC), which reuses shading results
from previously rendered frames to reduce shading costs. This
framework is used by many applications described later in this tu-
torial. The basic idea was proposed individually by Nehab et al.
(2006, 2007) and Scherzer et al. (2007). RRC stores previous shad-
ing results in screen space, thereby avoiding complex data struc-
tures and parametrization problems, and allowing efficient imple-
mentation on programmable graphics hardware. We will discuss
the method in detail from theory to implementation, including the
various alternatives for mapping different stages of the algorithm
onto shader programs. We also give a detailed analysis of the as-
sociated computational overhead, output quality, and the tradeoff
between the two. Since the method is not limited to caching the fi-
nal shading color, we give general guidelines for determining which
part of the shader to cache. Finally, we show several examples of
directly applying this method to accelerate fill-bound scenes. Some
of the materials are adapted from Nehab et al. (2007) with permis-
sion.

3.1 The Essentials

The key concept in the RRC method is to establish a reverse pixel
mapping by reprojection. The shading result from the previous
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Figure 2: The reverse reprojection operator. The shading result
and pixel depths of time t-1 are stored in screen-space framebuffers
(left). For each pixel p at time t (right), its reprojected position
πt-1(p) is computed to locate the corresponding position at frame
t-1. The recomputed scene depth is compared to the stored pixel
depth. A pair of matching depths indicate a cache hit (p2), whereas
inconsistent depths indicate a cache miss (p1).

frame (also referred to as payload hereafter) is stored in a separate
framebuffer (cache). For each pixel generated in the new frame,
we know the surface point from which it originated. We also know
where this surface point was, in 3D space, at the time the previ-
ous frame was rendered. From this knowledge, we can easily find
where it previously projected to, and test whether it was visible
at that time. We can then fetch whatever surface information we
stored in the previous framebuffer, and use it while rendering the
new frame. In summary, the basic idea here is to let the render-
ing of the current frame gather and reuse shading information from
surfaces visible in the previous frame.

Formally, let ft denote the framebuffer at time t. This buffer holds
the cached pixel attribute that can be reused in a later frame. We
also keep an accompanying buffer dt which holds the scene depth
in screen space. Let ft(p) and dt(p) denote the buffer values at
pixel p ∈ Z2. For each pixel p = (x, y) at time t, we determine the
3D clip-space position of its generating scene point at frame t-1,
denoted (x′, y′, z′) = πt-1(p). Here the reprojection operator
πt-1(p) correlates point p with its previous position at frame t-1.
Note that with this reprojection operation, we also obtain the depth
of the generating scene point z′ at frame t-1. This is used to test
whether the current point is visible in the previous frame. If the
reprojected depth z′ ≈ dt-1(x′, y′) within some tolerance, we con-
clude that the current pixel p and the reprojected pixel ft-1(x′, y′)
are indeed generated by the same surface point, thereby the previ-
ous value can be reused. Otherwise no correspondence exists and
we denote this by πt-1(p) = ∅, referred to as a cache miss. The
reprojection operation is illustrated in Figure 2.

Applying the reprojection operator to accelerate expensive pixel
shading computation is then straightforward. Figure 3 shows the
schematic diagram of how we achieve this. When each pixel p is
generated, the reprojection shader fetch the value at πt-1(p) in the
cache and tests if the result is valid (i.e. cache hit). If so, the shader
can reuse this value in the calculation of the final pixel color. Oth-
erwise, the shader executes the normal pixel shading. Whichever
route the shader follows, it always stores the cacheable value for
potential reuse during the next frame.

Next we will map this scheme into a simple and efficient implemen-
tation.

3.2 Implementation

In this section, we provide detailed description as well as code snip-
pets for mapping the different stages of the RRC algorithm into a
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Figure 3: Schematic diagram of the reverse reprojection caching
process (Courtesy of Diego Nehab).

minimum yet complete implementation. We also include several
details and improvements with hindsight that are not described in
the original papers (Nehab et al., 2006, 2007; Scherzer et al., 2007).

3.2.1 Determining Cache Coordinates

The main computational challenge we face is to efficiently com-
pute the reprojection operator, which maps the location of a pixel’s
corresponding scene point in the previous frame. Fortunately, this
operator only need to be computed at vertex level and we leverage
the hardware interpolator between the vertex and the pixel stage to
deliver the per-vertex reprojection result to the pixel level.

Assume the cache buffer ft−1 computed in the previous frame is
valid. At frame t, the homogeneous projection space coordinates
(xt, yt, zt, wt)vert of each vertex v are calculated in the vertex
shader, to which the application has provided the world, view and
projection matrices and any animation parameters (such as blend-
ing matrices and factors used for skinning). To perform correct
reprojection, the application also has to provide these matrices and
animation parameters at t − 1. A duplicated transformation code
in the vertex shader uses these data and compute the projection-
space coordinates (xt-1, yt-1, zt-1, wt-1)vert of the same vertex at
frame t − 1. These coordinates become attributes of each trans-
formed vertex, which are passed down to the pixel shader, causing
the the hardware to interpolate them automatically. This automati-
cally gives each pixel p access to the projection-space coordinates
(xt-1, yt-1, zt-1, wt-1)pix of the generating surface point at time t-1.
The final cache coordinates pt-1 are obtained with a simple division
by (wt-1)pix within the pixel shader. Figure 4 shows the example
shader code for this process. Note that although only rigid trans-
formation is shown, the algorithm can be combined with arbitrary
complex vertex tasks.

3.2.2 Detecting Cache Misses

Cache miss refers to those occasions when a surface point at frame
t was invisible at frame t− 1, therefore no cached value can be ob-
tained. This could happen when the previous position of the point
lies outside the viewport (clipped), or was blocked by an irrelevant
object closer to the camera at the time (occluded). Both cases can
be detected by examining the reprojected clip-space 3D position
πt-1(p) of the point of interest, as discussed briefly in Section 3.1.
For the clipped case, we simply test if the reprojected screen space
XY coordinate (Figure 4, line 9 in the pixel shader) is beyond the
viewport boundaries [0, 1] × [0, 1]. Fortunately this can be effi-
ciently done in a single comparison instruction. For the occluded
case, we need to compare the reprojected depth πt-1(p).z with the
previous depth dt-1(x′, y′) fetched from the cache. If the cache
depth is within a small tolerance σ of the reprojected (expected)
depth, we conclude that cache value is indeed from the same piece
of geometry that we are rendering, and report a cache hit. Other-
wise we report a cache miss. Figure 6 illustrates cache miss due to
occlusion changes between consecutive frames. A sample shader

Vertex Shader

1 VS_OUTPUT RenderSceneVS(...)
2 {
3 VS_OUTPUT Out;
4 / / p r o j−s p a c e c o o r d i n a t e f o r t h e c u r r e n t f rame
5 Out.Pos = mul(vPos, g_mWVP);
6 / / p r o j−s p a c e c o o r d i n a t e f o r t h e p r e v i o u s f rame
7 Out.PosPrev = mul(vPos, g_mWVP_Prev);
8 return Output;
9 }

Pixel Shader

1 float4 RenderScenePS(VS_OUTPUT In)
2 {
3 / / p e r s p e c t i v e d i v i s i o n
4 In.PosPrev /= In.PosPrev.w;
5 / / t r a n s f o r m c o o r d i n a t e s from NDC t o s c r e e n
6 In.PosPrev.xy = (In.PosPrev.xy + 1.f) * 0.5f;
7 In.PosPrev.y = 1.f - In.PosPrev.y;
8 / / f e t c h t h e p r e v i o u s v a l u e from cache
9 float4 cache_val = g_txCache.Sample(

BiLinearSampler, In.PosPrev.xy);
10 ...
11 }

Figure 4: Sample shader code for computing the cache coordinate
and fetch the corresponding data in the cache.

Pixel Shader

1 bool bHit =
2 / / c l i p p e d c a s e ( w i t h i n [ 0 , 1 ] x [ 0 , 1 ] )
3 saturate(In.PosPrev.xy) == In.PosPrev.xy &&
4 / / o c c l u s i o n c a s e ( d e p t h match )
5 abs(In.PosPrev.z-cache_val.w) < g_fZThres;

Figure 5: Sample shader code for detecting a cache miss.

code fragment of this process is shown in Figure 5.

We use a bilinear texture fetch to interpolate the depth stored in the
cache. For smooth surfaces, this is supposed to interpolate the near-
est four depth values as if they are on a plane. Note that since depth
is usually stored non-linearly, this interpolation is not accurate but
usually provides an acceptable approximation. For discontinuity
boundaries, the mixed values normally do not match the depth of
either side, thus automatically lead to a cache miss (this is further
discussed in Section 3.2.3).

A tricky case of of depth separation is that when multiple objects
intersect. At such points, pixels across the intersection boundary
may have very similar depths, such that samples from an incorrect
object may slip through the depth match test. This often makes
moving objects leave a trail over the background. One method to
avoid this is to assign ID to different objects and test if the IDs
match as well. If the number of objects are small, the IDs can even
be conveniently packed with the depth value as the most significant
bits, so that depth comparison automatically fails if the IDs do not
match.

To improve robustness, the depth match threshold ε can be set as
the resolution of the depth buffer. Due to the error introduced in
interpolating non-linear Z value or by surfaces with high curvature,



it may be necessary to increase this value. However, with a 16-bit-
per-channel cache buffer, we found this error negligible. Alterna-
tively, with a floating point complementary Z-buffer, the threshold
can be set according to Akeley and Su (2006) using their formula
based on a theoretical analysis of the error.

3.2.3 Cache Resampling and Filtering

In general, when retrieving values from the cache, the reprojected
position πt-1(p) lies somewhere between the set of discrete sam-
ples in the cache buffer ft-1 and thus some form of resampling is re-
quired. This resampling often involves computing a weighted sum
of the values in some vicinity of πt-1(p). The most common ap-
proach for reconstructing pixel value at fractional positions is bilin-
ear filtering, which is directly supported by the hardware. In most
situations this suffices for practical use. However, if one wishes to
reuse cached values over many (e.g. > 5) frames, then the resam-
pling error accumulates repeatedly in each frame and finally leads
to an overblurred result. This is further analyzed in Section 3.4.2.
To remedy this, higher-order reconstruction can be used. The most
commonly used high-quality image resampling filters are the Lanc-
zos2 and the Mitchell-Netravali (1/3, 1/3) kernel. By applying
either of these kernels to a local 4 × 4 neighborhood of the recon-
struction center and compute the convolution, we can obtain a value
of better accuracy and less smoothing. Typically we observe 1/3 to
1/2 times less blur by switching to such kernels.

Neither bilinear nor the higher-order reconstruction methods de-
scribed above handles motions that involve minification and magni-
fication. In such cases the reprojected pixel size differs from that in
the cache, so aliasing or overblur artifact may appear if not filtered
properly. In the case of minification, the pixel of interest may cover
multiple pixels in the cache. It is often worthwhile to precompute a
mip-chain of the cache and leverage the hardware trilinear texture
fetch to sample the correct mip level. Magnification, on the other
hand, is usually more difficult to handle, since the cached image do
not have the information to resample to higher resolution without
blur. Typically, pixels that reproject to fractional pixel positions in
the cache are inaccurate. The closer to the half-way between pixels
(i.e. grid center), the larger error. It is therefore beneficial to force
refresh (reshade) these pixels with large error. This can be achieved
by comparing the offset distance in the pixel grid with the repro-
jected pixel size. If the former is larger, then trigger a reshade. A
sample code of this is provided in Figure 7. Note, however, that
such a strategy may trigger large and incoherent regions of refresh-

Frame n Frame n+ 1 Hitmap

Figure 6: Illustration of the regions of reuse and refresh. Pixels
that are reused are shown in green in the hitmap. Pixels previously
occluded (cache miss) or explicitly refreshed are computed from
scratch and shown in red. Note that explicit refreshes occur along
a random pattern in the framebuffer (Section 3.2.4).

Pixel Shader

1 / / ” i n t e g e r ” v a l u e o f t h e r e p r o j e c t e d p o s i t i o n
2 float2 IPrev = In.PosPrev.xy * ScnSz.xy;
3 / / r e p r o j e c t e d p i x e l r a d i u s
4 float2 PixR = max(ddx(IPrev), ddy(IPrev))*0.5;
5 / / t r i g g e r a cache miss i f t h e d i s t a n c e from
6 / / t h e r e p r o j e c t e d p o s i t i o n t o t h e n e a r e s t
7 / / p i x e l c e n t e r i s l a r g e r t h a n PixR
8 bool bHit = bHit &&
9 all(abs(IPrev - round(IPrev)) <= PixR);

Figure 7: Sample shader code for detecting magnification in mo-
tion and reporting a cache miss for potentially inaccurate pixels.

ment, which may significantly lower the performance. In practice
the minification/magnification scale is often small because there is
usually little change in the scene between frames. Therefore, it is
recommended to apply this only when strictly necessary.

In addition, the traditional filtering schemes do not produce cor-
rect results at discontinuity boundaries even when the pixels match
perfectly with those in the cache. When filtered, the edge pixels
are always reported as cache miss because the averaged depth do
not match the depths on either sides. This can be improved by in-
troducing a bilateral filter (Tomasi and Manduchi, 1998) for edge-
aware filtering. Before averaging the neighboring samples, they are
first tested if they match the desired depth (with a threshold looser
than ε). Samples that do not pass the test are rejected. The rest are
averaged with spatial weights as usual. In this way, only the sam-
ples from the correct geometry are averaged and filtered. This will
significantly reduce the false cache-miss pixels at geometry bound-
aries. However, a bilateral filter cannot be implemented using the
hardware bilinear filtering mechanism and therefore can be much
slower to execute. In most applications bilinear is still more prefer-
able since usually the additional false-miss edge pixels only occupy
a small percentage of the screen.

3.2.4 Refreshing Strategies

The cached value cannot be reused forever, since the shading may
change over time and the cached signal may be degraded after re-
peated resampling over frames. It is usually necessary to refresh the
cache (i.e. recompute shading) periodically in order to prevent the
shading error from accumulating excessively. Of course, for ren-
dering acceleration the refreshment of the whole screen should be
amortized over many frames relatively evenly in order to reduce the
shading cost and ensure a smooth framerate. Therefore, for a fixed
refresh rate, we divide the screen into n parts and update them in a
round-robin fashion in each frame using the condition

(t+ i) mod n = 0 (1)

by testing it in the pixel shader. There are two basic ways of divid-
ing the screen:

Tiled refresh regions. We can partition the screen into a grid of
n non-overlapping tiles. A global clock t is incremented at
each frame and passed into the pixel shader. For each pixel,
the pixel shader computes i as the tile index simply using its
position.

Randomly distributed refresh regions. The screen pixels are
randomly partitioned into n sets with relatively same size.
This is achieved by precomputing and storing a randomly dis-
tributed integral offset iwith each 2×2 pixel block (explained
below).



Tiled refresh provides excellent coherence of refreshed pixels and
can be efficiently executed on the GPU. This works best for sig-
nals changing very slowly with a relatively small refresh period
n, so that the difference across tile boundaries are not noticeable.
Randomly distributed refresh on the other hand, trades the clear
boundaries between grids for high-frequency noise that is evenly
distributed across the image. If the signal changes fast or the re-
fresh period is large, then visible random block pattern will still
be visible, but is usually much less objectionable than clear tile
boundaries. However, one has to be careful implementing this on
the GPU, since per-pixel refresh decision does not work well with
GPU pixel-quad shading mechanism. We found that enforcing the
same offset i in 2 × 2 pixel regions significantly improves the per-
formance. This pattern is also visualized in Figure 6. Larger block
size may lead to slightly better performance on some GPUs because
of potential misalignment of refreshment block with the GPU shad-
ing quad. However, block noise can be generally more noticeable
with larger blocks.

In certain applications it is possible to predict the underlying sig-
nal changes. It is therefore desirable to dynamically change n (per
pixel block) to force quicker update in response to signal change in
certain regions. Note that for an arbitrary n, the screen pixels has
to be divided into enough groups (i.e. the range of i is larger than
n) for Equation 1 to function correctly. In addition, some damping
of n change is needed for the algorithm to complete at least one
update round of all the pixels.

Due to arbitrary scene motion, it is not strictly guaranteed that all
the pixels are refreshed after n frames. This is normally less of a
problem since it rarely happens and is often obscured by random
noises. If there is a free channel in the cache (e.g. the cache is
only storing grayscale values or depth is stored separately rather
than in the alpha channel), it can be used to store a counter that
is increased in every frame and reset when refreshed. In this way,
any pixels that are misses a refresh in one cycle can be immediately
detected (counter > n) and gets refreshed.

Finally, note that many shaders and applications of RRC do not
need an explicit refreshing strategy. For example, multi-pass ren-
dering effects such as motion blur, depth of field or stereoscopic
rendering only caches data in a single frame. Another example is
amortized sampling, in which the exponential smoothing filter au-
tomatically attenuates the weights of older samples.

3.2.5 Control Flow Optimization

The need to refresh in either cache miss or explicit refresh cases
directs the shading task into two branches: reuse and refresh. Ev-
ery pixel will follow only one of the branches. Although there is
a substantial progress in improving branching efficiency on mod-
ern GPUs, it is still only effective at larger granularities (i.e. the
decision is relatively coherent across the screen). Therefore, the ac-
tual implementation of this branching has significant impact on the
efficiency of the RRC algorithm. According to Sitthi-amorn et al.
(2008a), there are three different strategies for this task.

One-pass algorithm This most straightforward approach com-
bines cache hit and miss branches in a single pixel shader. They
are selectively executed using a single “if” statement in the shader
(Figure 8(a)). When a group of pixels contains both cache hit and
miss and are executed in parallel on the GPU, it takes the time of
the longest branch to finish the bundle task.

Two-pass algorithm This approach uses the Z-buffer in conjunc-
tion with two rendering passes to partially address the performance
loss in dynamic flow control (DFC). In the first pass, on a cache

miss or forced refresh the shader simply discard the pixel so that
the depth buffer is not altered to force the execution in the next
pass, otherwise it reuses the cache payload and compute the shad-
ing, and write the depth as normal. The second pass executes the
original pixel shader only for those pixels that need updates, based
on regular depth tests (Figure 8(b)). This method leads to greater
data parallelism in the second pass. However, if the shading com-
putation after fetching the payload is non-trivial, the two execution
branches are still unbalanced which can limit the speed gain with
non-ideal hardware DFC.

Three-pass algorithm By further separating the rest shading
computation after obtaining the cache payload into a separate pass,
we have this three-pass algorithm. The first and second passes are
similar to those in the two-pass algorithm, except that they only
output the cache payload to the framebuffer. The third pass fetches
this cache value and compute the rest of the shading. This algorithm
has all the branches balanced in the process, so that parallelism is
mostly exploited. However, there are added costs of more passes
for processing geometry.

As Sitthi-amorn et al. (2008a) shows, these three strategies have dif-
ferent advantages and are suited at different occasions. Generally,
the two-pass and three-pass algorithms out-perform the one-pass
one when the computation of cache payload is expensive, which is
almost always true for RRC applications. The three-pass algorithm
exhibits better performance if the rest of computation after obtain-
ing the payload is also expensive. It also has the benefit that no
multi-render-target (MRT) support is required, since it writes the
cache and the final color in different passes. However, if the ge-
ometry is complex and additional passes are expensive to process,
then the gain of two/three-pass algorithms can be small and may
not warrant their use. The quantative analysis can be found in the
original paper. Overall it is left to the programmer which algorithm
to choose, based on the complexity of the geometry and the shader,
as well as which part of the shader is cached.

3.2.6 Cache storage

One of the decisions in applying the RRC is the way that the cache
is stored. The cache holds the value of the intermediate or final
shader output that we want to reuse (i.e. payload) and the screen
space depth of every pixel. There are several alternatives of extract-
ing this data out of the previous rendering frame. When RRC is
used to cache the final color output of the pixel shader, the most
obvious choice is to bind the previous framebuffer as a texture for
the cache. Otherwise, there need to be a separate framebuffer for
the cache, and the rendering passes (either 1-pass method or 2-pass
method) will write both the cache value and the final color into their
corresponding buffers using MRT support. Note that as stated be-
fore, the 3-pass algorithm does not need MRT for writing to the
cache, because the cache payload and the final color are written in
different passes.

The pixel depth usually requires more precision than the cache pay-
load. A straightforward implementation to access it is to directly
bind the depth buffer from the previous frame. Since both the depth
passed down in the shader (In.PosPrev.z in Figure 4) and the
value retrieved from the depth buffer are expressed in Normalized
Device Coordinates (NDC) space (i.e. after division by w), they
can be directly compared. Alternatively, we can store the depth
in a spare channel in the cache (e.g. usually the alpha channel is
free). This has the benefit of combining the retrieval of cache value
and depth into a single texture fetch, but requires that all the four
channels have at least 16-bit precision each.
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Figure 8: Three control flow strategies for implementing the RRC (Sitthi-amorn et al., 2008a).

3.3 Determining What to Cache

Note that the value stored in the cache need not be the final pixel
color, but can be any intermediate calculation that would benefit
from this type of reuse. In fact, the final pixel color usually contains
time- and view-dependent components. For example, on a highly
polished object the specular highlight often moves quickly along
the surface when the light or the viewpoint is changing. Caching
such quickly changing signals often results in visual artifacts even
when small n is assigned. Therefore, it is important to select the ap-
propriate portion of shading computation for caching. The general
guidelines are:

1. The value cached should exhibit only weak view- and light-
dependency and changes slowly over time. This guarantees
that caching the value will not lead to objectionable temporal
lags and refreshing artifacts;

2. The value cached corresponds to a significant portion of com-
putation in the original shader. This ensures that caching the
value reduces the cost of shading by a considerable amount.

Generally when selecting a value to cache, the programmer should
seek to maximize the ratio of the saved computational effort relative
to the magnitude of signal change between the frames (i.e. caching
error). This is usually a manual work and requires a solid knowl-
edge of the shader and the relative cost of its each components.
Some examples of good candidates are:

Static procedural noise. The standard Perlin noise requires several
texture fetches and complex ALU operations to compute. In
addition, it is usually computed in multiple bands for in-

creased variety. It is often used as stationary and contains
only relatively low frequency components.

Ambient lighting. Diffuse and indirect lighting are difficult to
compute in real-time even in an approximate sense. They are
view independent and usually change slow over time.

Complex integral. Certain effects, such as soft shadow, SSAO,
anti-aliasing, sub-surface scattering and BRDF effects require
computing a large integral. The computation of the integral
can usually be amortized over time.

Multi pass effects. Motion blur, depth of field and stereoscopic 3D
all require generating multiple images for nearby views in
each frame.

Although there are many examples shown in various papers demon-
strating the effectiveness of RRC, it is still difficult sometimes for
programmers to decide whether it should be applied to certain tasks,
particularly when the principle of the shader is not totally clear.
Sitthi-amorn et al. (2008b) proposed a system to automate this de-
cision. The basic idea is to analyze the shader automatically and
obtain the knowledge of tradeoffs in caching different components
of the shader. Figure 9 shows the conceptual diagram of the system.
The target shader is first analyzed and represented by an abstract
syntax tree using compiler techniques. With tree node substitu-
tion, various versions of the shader that use RRC to cache different
components are generated and stored in a shader pool. For each
shader in the pool (correspond to each candidate caching value), an
error model and a performance model (will be mentioned in Sec-
tion 3.4) are fitted based on individual profiling results. Using these
model parameters, an interactive profiler can be driven by the user
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Figure 9: Conceptual model of the automated reprojection-based pixel shader optimization system (Sitthi-amorn et al., 2008b).

for choosing the best cache candidate. The user simply adjust the
desired error threshold and the system will automatically select the
the most efficient candidate that satisfies the error tolerance. This
system automates both selecting ideal candidate and injecting codes
for RRC, thus greatly eases the use of RRC tool for accelerating
real-time shaders.

3.4 Analysis

In this section we give analysis of the quality and speed tradoff in-
volved in applying the general RRC algorithm. In most cases we
limit our discussion to results that are directly relevant to applica-
tion decisions. For the detailed derivation of these results, please
refer to Sitthi-amorn et al. (2008a,b); Yang et al. (2009).

3.4.1 Computational Overhead

The speed gain of applying the RRC method is affected by a lot of
factors, including the control flow algorithm used (Section 3.2.5),
refreshing strategy (Section 3.2.4), workload of the cache-hit and
miss shaders, hardware flow control capabilities and granularity
of parallel threads. Here we analyze a representative case with
using RRC to directly optimize a fixed model/shader scene (Per-
lin noise albedo with Blinn-Phong specular lighting on a 75K-tris
Stanford Dragon model, also described later in Section 3.4.3) with
fixed caching component (low-frequency bands of noise computa-
tion only – two bands out of five). All the experiments are gener-
ated using an animation sequence that shows the object rotating at
a moderate rate in front of the camera.

We measure the final average render time of various approaches for
comparison. Random distributed refresh regions is used for cache
refresh, with different quad sizes (1×1, 2×2 and 4×4). The refresh
period we tested ranges from 1 (always refresh, i.e. the original
shader) to 50. We also experimented the 1-pass, 2-pass and 3-pass
control flow algorithms described in Section 3.2.5. The render time
we measured with these variables are shown in Figure 10.

From the graph we have several observations. The first to notice is
that the 1-pass algorithm does not provide much speed gain over all
the range of refresh periods. This is because the GPU dynamic flow
control (DFC) mechanism only works efficiently for larger contin-
uous regions of pixels. Bulks of concurrently shaded pixels fol-
lowing diverse branches will always take the time of the longest
branch to execute, which unfortunately is almost always the case
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Figure 10: Effect of refresh quad size and refresh period on perfor-
mance.

with small random refresh quads. With 2-pass and 3-pass algo-
rithms, different branches are forced to shade in different passes,
effectively avoiding this problem. The 3-pass algorithm is further
optimized than the 2-pass, because the uncached computation (dark
green block in Figure 8) is non-trivial to compute. Therefore the
first pass in the 2-pass algorithm still suffers from DFC efficiency
issue, as discussed in Section 3.2.5. With a lower refresh period n,
the 2-pass algorithm can even take more time to execute than the
original shader. With the 3-pass algorithm, the DFC inefficiency is
mostly avoided, resulting in consistent reduction of shading time.

For all three algorithms, we consistently observed a significant drop
in rendering time when going from a refresh quad size of 1 × 1 to
2×2, for the reason that GPU executes pixel shaders in at least 2×2
blocks. The 4 × 4 block can provide even larger speed gain for a
similar reason. In our experiments, block sizes larger than 4×4 can
sometimes lead to better performance, but the pattern can be more
objectionable in the final rendering.

Finally, as expected, increasing the refresh period leads to a greater
number of cache hits within each frame and causes a steady drop
in rendering times. This rate of improvement decays exponentially,
as the hit-rate γ(n) grows geometrically with n, modeled with the
parametric expression

γ(n) = µ(1− 1/n). (2)

In the equation, µ is the average percentage of surface area that



is mutually visible between consecutive frames in the animation
sequence. This number is usually greater than 90% (see Figure 1).

Assume that the shaded pixels on the screen is fixed (e.g. the model
is positioned to subtend the entire viewport). We estimate two tim-
ing figures for caching a specific node in the shader: the frame time
when all the pixels are cache hit (Th) or cache miss (Tm). Then the
average frame-time is predicted as:

T (n) = γ(n)Th + (1− γ(n))Tm. (3)

With the 3-pass algorithm, this model is shown to closely agree
with the actual frame time measurement for both NVIDIA and ATI
hardware (Sitthi-amorn et al., 2008b). From this equation, we con-
clude that the speed gain is mostly determined by the difference
between Th and Tm, as well as the hit rate (Equation 2). The curve
in Figure 10 shows that too large a refresh period n does not provide
much speed gain over medium values, but leads to linearly slower
adaptation to signal changes and allows larger reprojection error to
exist. Therefore, this value should be chosen carefully according
to properties of the underlying cached component (variation speed
and spatial frequency). Trial and error, as well as automatic sys-
tems such as the one described by Sitthi-amorn et al. (2008b) can
be used for this task.

3.4.2 Resampling Error

As described in Section 3.2.3, resampling is required when fetch-
ing data from the cache. Since the cached value can be reused over
multiple frames, repeated resampling values may lead to undesir-
able blurring. This blurring has the similar effect of convolving the
cache image with a Gaussian filter, of which the size or variance
σ is growing with increasing number of repeated resampling. This
variance is usually used to characterize the “amount/radius of blur”
that contaminates the underlying signal.

The amount of blur is related to the fractional pixel velocity after
each frame of reprojection. The fractional velocity is defined as
v = πt-1(p) − bπt-1(p)c, i.e. the fractional part of the reprojec-
tion vector, which specifies the position of the bilinear kernel center
in the pixel grid. Although obtaining a closed-form expression for
σ2
t (p) is impractical for arbitrary scene motion (with v changing

every frame), the case of constant panning motion with fixed v is
tractable and can be used to locally approximate other types of mo-
tion. Following the derivations from Yang et al. (2009) without
applying the exponential smoothing, the variance of blur σ after n
frames of reprojection is:

σ2
v = n · vx(1− vx) + vy(1− vy)

2
, (4)

where vx and vy are the x and y components of the fractional ve-
locity v. This important result implies that when motion speed is
fixed or follows a fixed distribution, then the blur kernel size grows
linearly with the increasing number of reprojected frames. This is
particularly useful for estimating the worst case amount of blur by
simply fixing both vx and vy at 0.5. If the user wants to limit the
blurring artifact from noticeable, the refresh period n should be set
according to Equation 4 such that the blur is less than the inverse of
the signal frequency bound.

On the other hand, Sitthi-amorn et al. (2008b) introduce an empiri-
cal model that measures the reprojection error by assuming general
cases of motion types and correlations of the cached value with the
final color. The model is a generalization of the observed fact that in
many pixel shaders and representative motion types, the error of the
final color decays at an exponential rate with increasing frames of
repeated reprojections. Here the error is measured as L2−distance
between the color produced by the original shader and one modified

to use the RRC. The three factors contributing to this error: the cor-
relation between inputs across consecutive frames, the repeatedly
resampling error and the probability of a cache hit (hit-rate), all ap-
proximately follow an exponential decreasing rate. Based on these
observations, a parametric function ε is proposed for estimating the
error:

ε(n) = α(1− e−λ(n−1)) (5)

Note that ε(1) = 0 as required, since this corresponds to refreshing
the cache at each frame. This model has two parameters, α for the
scale of the error, and λ for the exponential decreasing rate of error
accumulation. Unfortunately these two parameters are not fixed and
require to be fitted using several profiling test for each combination
of shader, motion type or cached component (node), as described
by Sitthi-amorn et al. (2008b). However, even when uncalibrated,
this equation gives intuition of how the rendering quality degrades
with caching over more frames – the exponential increase of error.
This together with the exponential decrease of render time are taken
into account in setting the optimal n for caching.

There are occasions when the error does not grow as much (i.e.
α and λ are small). For example, when the cached signal is of
relatively low frequency, the resampling blur will have much lower
impact on the error, for reasons we explained before. Similarly,
error in the cached component can have only weak effect the final
color output for some shaders. It is helpful to keep these cases in
mind in selecting the ideal component and shader for acceleration.

3.4.3 Quality–Speed Tradeoff

We have shown that for a fixed shader and cached component, the
predicted pixel error ε(n) and the frame time T (n) are all functions
of the refresh period n. It is then possible to analysis the tradeoff
between the two by varying n and plotting the trajectory of ε and T .
The upper graph in Figure 11 shows such tradeoff curves of caching
different components in a Perlin noise marble shader, which is also
used earlier in Section 3.4.1. The shader combines a marble-like
albedo, modeled as five octaves of a 3D Perlin noise function, with
a simple Blinn-Phong specular layer. Each curve represents the
tradeoff of caching a certain component (intermediate value) in the
shader, with varying n.

The curves tend to organize into four clusters. Cluster A caches cal-
culations inside the noise function, including its final value. These
curves appear near the lower left hand region, corresponding to
cached components that leads to greater reduction in render time for
less error. Cluster B, on the other hand, represents components that
are relatively inexpensive to compute and depend strongly on view
and light position. These may include diffuse and specular lighting
component and appear near the upper right region, indicating large
error and little performance gain. Cluster C represents caching the
combination of almost all the components (e.g., the final color).
They appear near the upper left region and offers the greatest speed
up with large error. Finally, Cluster D represents caching one in-
stance of a value used multiple times in the shader, causing the
value to be computed twice in both the cache pass (second pass)
and the final color pass (third pass). These nodes introduce wasted
computations and are not suitable for caching either.

Within each curve, larger n gives better performance gain but also
introduces more shading error. As an example, we set four pixel
error thresholds ε1 to ε4 and use the automatic system described
by Sitthi-amorn et al. (2008b) to choose the best component for
caching and the corresponding n. The results visualizing the se-
lected nodes are also shown in Figure 11. Notice that caching too
little computation does not lead to satisfying speed gain (ε1, ε2),
whereas caching all the computation generates significant visible
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Figure 11: Error/performance paths and four error-performance
tradeoff selections for the Perlin Noise-Dragon scene. The graph
at top plots the predicted average pixel error vs. render time over
a range of refresh periods for every cacheable component in the
shader. The images below visualize the best reprojection tradeoff at
four different error thresholds indicated in the graph. Each image
displays the cache payload and chosen refresh period, along with
the final shading and measured frame rate. The original shader
runs at 29 FPS as indicated by the dashed line.

error (ε4). Caching all the noise computation with a relatively large
n (ε3) leads to satisfying result in both speed and quality.

3.5 Shader Acceleration Examples

In addition to the Perlin-noise dragon shader, we show two more
examples here of directly accelerating general pixel shading tasks
using the RRC. The first shader is a Trashcan environmental reflec-
tion shader from ATI’s Toyshop demo, which combines a simple
base geometry with a high-resolution normal map and environment
map to reproduce the appearance of a shiny trashcan. It recon-
structs the surface color from 25 samples of an environment map
combined using a Gaussian kernel. These 25 samples are evaluated

10%

5%

0%

Figure 12: Additional examples of shading acceleration using
RRC. Each image compares (top) an input pixel shader to (bot-
tom) a version modified to cache some partial shading computa-
tions over consecutive frames. The shading error after applying the
cache is illustrated in the inset images.

along a 5 × 5 grid of normal directions computed from the nor-
mal map. The result is gamma corrected and finally displayed. In
this example, we found that caching the sum of 24 samples of the
possible 25 gives the most effective speed up without introducing
too much visible artifacts (see Figure 12(left) for a comparison). In
other words, the modified shader evaluates 24 samples every fourth
frame (on average) and evaluates the single sample with the great-
est reconstruction weight at every frame. Indeed, this shader is not
particularly suited for using TC to accelerate, because all of the cal-
culations depend strongly on the camera position and cached values
quickly become stale. Nevertheless, RRC provides a 2.1× perfor-
mance improvement at an acceptable level of error.

The second shader computes an approximate object space ambient
occlusion at each pixel for a chessboard scene with the king piece
moving and the rest pieces static. The basic idea is to approximate
the scene geometry as a collection of discs which are organized in a
hierarchical data structure and stored as a texture. As each pixel is
shaded, this data structure is traversed to compute the percentage of
the hemisphere that is occluded. This calculation is combined with
a diffuse texture and a Blinn-Phong specular layer to produce the
final color. In this particular scene, the ambient occlusion calcula-
tion is carried out by summing the contribution of the king chess
piece separately from the other pieces. We found that caching the
portion of the ambient occlusion calculation that accounts for only
the static pieces gives the best result. In other words, the contribu-
tion of the moving king and the remaining shading are recomputed
at every frame. This provides a 8× speed-up for a marginal level
of error and is demonstrated in Figure 12. Caching more computa-
tions such as the entire ambient occlusion calculation will lead to
visible error in the result although the speed-up factor is also larger
(15× or more).

4 Applications and Extensions of Reverse
Reprojection

The reverse reprojection cache is demonstrated to provide impres-
sive acceleration results for a number of common pixel shaders.
Next we will show that by simple adaptation and extension, it can
also be applied in accelerating a wider range of shading effects,
including multi-pass rendering effects, antialiased procedural tex-
tures, and global illumination effects that are achieved by Monte-
Carlo integration.

4.1 Multipass Rendering Effects

There are a number of effects that require rendering a set of images
with similar viewpoints. Traditionally the images are rendered sep-
arately without considering similarity or correlation within these
rendered frames. By applying reprojection based data reuse, we are
able to save a significant amount of pixel computation during shad-



Stereoscopic rendering

(a) final color       (b) error (enhanced)      (c) albedo only 

Figure 13: Accelerating stereoscopic rendering using RRC (Cour-
tesy of Diego Nehab). Caching (a) the final color leads to (b) visual
errors near specular highlights. These errors can be eliminated by
(c) caching only the surface albedo and recomputing the specular
contribution at each frame.

ing mutually visible regions. Technically speaking certain cases
of this such as stereoscopic or depth of field cannot be classified
as temporal coherence exploitation, since the multiple frames are
generated for different view points rather than different time steps.
However, the technique behind them are the same.

4.1.1 Stereoscopic Rendering

Rendering stereo scenes requires generating two images for two
different views. These two images are then encoded and sent to a
display. For example, when rendering anaglyph stereo images, we
render the left eye view into the red channel, and the right eye view
into the green and blue channels. Using glasses with color filters,
each eye is exposed to the appropriate view, and the images appear
to have depths. Similar idea applies to other stereoscopic rendering
techniques. In order to combine the two different views into a single
image, two rendering passes are required for each of the view, and
a final pass directs these two images into different channels of the
result image.

The proximity of theses views allows us to reuse shading informa-
tion computed for one view at mutually visible points in the op-
posing view. This idea was simultaneously introduced by Hassel-
gren and Akenine-Möller (2006) targeting a specially augmented
multi-view rasterization architecture, and Nehab et al. (2006) in a
simplified form for common hardware. As in normal stereo ren-
dering, we proceed in two passes. On the first pass, we render the
right eye view, caching the results. On the second pass, we render
the scene using the left eye camera parameters, and perform one
cache lookup per pixel. The hit shader simply copies the value read
from the right eye. The miss shader computes the pixel color from
scratch. Finally, we composite the results of the first and second
passes. The early-z culling technique can also be used to improve
branching efficiency in this case.

The data reuse between different views can lead to substantial per-
formance gains if the pixel shading cost dominates the rendering
process. It should be noted that although the two views may not be
exactly the same due to view-dependent effects, artifacts are rarely
distracting. Furthermore, if high-precision results are required, it is
usually possible to cache only the expensive view-independent in-
formation, and add view-dependent components after cache lookup.
This is similar to the normal workflow described in Section 3.3.

Figure 13a shows the result of caching the final color in render-
ing an anaglyph stereo image, containing a scene with 2k triangles
and procedurally generated noise texture. The scene also contains a
specular highlight view-dependent effect, which is common among

many materials. The result is generally acceptable but there are
some errors visible when comparing against the groundtruth (Fig-
ure 13b). If we do not cache the highlight, i.e. recompute it after
cache lookup, the error is completely eliminated. We observe a
57% improvement in frame rate with caching the final color, and
40% with caching the view-independent component.

4.1.2 Motion Blur

The motion blur effect can be simulated using temporal super-
sampling either in fixed time step or using stochastic sampling. The
most general technique on graphics hardware is to divide the frame
time into multiple smaller time steps, and render the scene at each
time step into an accumulation buffer (Haeberli and Akeley, 1990).
However, when directly implemented, this approach can be overly
slow. Fortunately, spatio-temporal coherence within time samples
allows us to use reprojection to speed up the rendering process.
Similar ideas has been explored by Chen and Williams (1993) and
Havran et al. (2003b) respectively for image based rendering and
ray-tracing applications.

We accelerate the accumulation buffer approach using the RRC as
follows. For all the intermediate frames within a output frame time
interval, we only fully render the first intermediate frame (both into
the accumulation buffer and the cache). For the remaining interme-
diate frames, we perform regular cache look up using reprojection
and attempt to reuse the value. Only when cache miss do we com-
pute the pixel color from scratch. Since all the value are directly re-
trieved from the first frame, there is no repeated interpolation error
as in the general task. The shading is also expected not to change
significantly because of the relatively small time step. Therefore,
no refresh is needed and the cache hit patterns are likely to be co-
herent across the image. This makes it efficient to use the 1-pass
algorithm, which also reduces the overhead of geometry processing
when using the RRC.

For this application, the quality loss is usually trivial and not per-
ceptible, given that the final frame is an average of many time sam-
ples. On the contrary, since the rendering process becomes much
faster, more time samples can be used. Figure 14 shows equal-time
comparisons of the results for the brute-force and the RRC accel-
erated results on a synthetic scene with motion blur effects. The
model has 2.5K triangles and uses Perlin noise for albedo. RRC
allows us to double the number of time samples and thus achieve a
much smoother and convincing result.

4.1.3 Depth of Field Effects

The depth of field effect can be simulated using the method very
similar to motion blur techniques described before (Also refer to
(Haeberli and Akeley, 1990)). The only difference is that individual
lens samples, instead of time samples, are accumulated. Sharp im-
ages are rendered for slightly different camera positions that sample
the area of the aperture. The sample pattern can be random (such
as a Poisson disk pattern) or stratified. If enough samples are gen-
erated, the averaged image produces an appropriate depth of field
effect. Similar to motion blur, the lens samples are usually very
close to each other. Therefore TC can be exploited for acceleration
using the same technique as described in Section 4.1.2.

Again in Figure 14 we show equal-time comparisons for this appli-
cation using the same scene. Since the depth of field effect requires
a 2D sampling, the undersampling artifacts exhibited in the brute-
force method are worse than the case of motion blur and can be
a ghosting distraction to the viewer. With the cached method, the
number of samples is more than doubled, producing acceptable and
convincing results at reasonable framerates.
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Figure 14: Equal time/quality comparisons between bruteforced
methods for rendering motion blur and depth of field effects and
accelerated techniques using the RRC (Courtesy of Diego Nehab).
Left: At high frame rates, brute-force methods may undersample
camera locations and lead to unconvincing results. Middle: Our
caching technique lowers the cost of a single pass, allowing the ac-
cumulation of more samples and thus smoother effects at compara-
ble frame rates. Right: Results obtained with cache-based methods
at equal frame rates.

4.2 Amortized Supersampling

A number of shading techniques require each pixel to compute a
weighted average of a number of spatial samples so that an Monte-
Carlo integral is obtained. This is often expensive to compute but
is crucial for high-quality rendering effects, such as spatial anti-
aliasing, soft shadow and global illumination approximations. We
describe a method for reprojecting and reusing previously com-
puted samples to help reducing the average computational cost and
improving quality. This section also provides a theory background
for some of the later sections.

4.2.1 Theory

To amortize the cost of sampling over multiple frames, we need
to reuse shading results that are computed in previous frames. For
instance, we can use a moving average over the past n estimates
for a given surface point. The degree of variance reduction in the
Monte-Carlo integral is directly related Unfortunately, storing the
past estimates in separate cache buffers leads to a serious disad-
vantage of requiring keeping and reprojecting n cache entries for
each pixel. To make this scheme practical, we need to combine the
multiple cached values of the same surface point.

A direct approach for achieving this is to introduce a recursive ex-
ponential smoothing filter for combining the results from different
frames. Let us first assume that in each frame t we only compute
one sample st(p) for each pixel p. The sample position is deter-
mined randomly or quasi-randomly depending on the integration
scheme we are using. We keep a running estimate of the integral

value in the cache ft. The running estimate is updated in every
frame after the new sample is obtained, according to the following
equation.

ft(p)← (α)st(p) + (1− α)ft-1
(
πt-1(p)

)
. (6)

Note that by expanding this recursive formulation, the running es-
timate becomes a weighted sum of all the previous samples for the
same surface point. The weight of a single sample decreases expo-
nentially in time, and the smoothing factor α regulates the tradeoff
between variance reduction and responsiveness to changes in the
scene. For example, a small value of α reduces the variance in the
estimate and therefore produces a smoother result, but introduces
more lag if the shading changes between frames. If reprojection
fails at any pixel (i.e. πt-1(p) = ∅), then α is locally reset to 1 to
give full weight to the current sample.

In a precise form, the degree of variance reduction is α
2−α . For ex-

ample, choosing a value of α = 2/5 reduces the variance to 1/4
the original. This is roughly equal to combining 4 previous sam-
ples with equal weights, although in reality 10 past frames affects
the result where earlier samples are lost in 8-bits of framebuffer
precision. It is noted that the result obtained using the recursive fil-
ter is biased by favoring the later samples. This will not result in a
shifted mean of the estimate if the sampling sequence is uniformly
random, but instead is important for achieving better quality in the
presence of signal changes and resampling error.

4.2.2 Achieving Subpixel Accuracy: Shader Antialiasing

Due to resampling error, simple amortized supersampling described
above cannot be directly used in applications that require subpixel
accuracy, such as pixel antialiasing. Yang et al. (2009) propose a
scheme to extend the technique to approximate subpixel accuracy.
Here we give a brief description of the underlying ideas. The theo-
retical details can be found in the original paper.

The major application of the described technique is to antialias pro-
cedural shaders. This includes procedural materials and complex
shading functions. Unlike prefiltered textures, procedurally defined
signals are not usually bandlimited (Ebert et al., 2003), and pro-
ducing a bandlimited version of a procedural shader is a difficult
and ad-hoc process (Apodaca and Gritz, 2000). Generally super-
sampling is often used for this task. However it can be prohibitively
expensive to evaluate the shader multiple times per pixel. Fortu-
nately, in many cases the underlying signals are constant or vary
slowly over time, so that previously computed samples can be re-
projected and reused, as described in the general case above. The
major issue to solve here is to reduce the resampling error to prevent
the accumulated cached samples from being distorted.

From the reprojected error estimator Equation 4 we get that the
bilinear reconstruction reaches the largest error when vx or vy is
close to 0.5. An effective method to reduce vx and vy is to apply
a higher resolution cache buffer, for example, 2 × 2 of the screen
size. However, maintaining such a buffer and reproject it every
frame introduces a significant overhead to the acceleration process.
We can instead store the 2× 2 quadrant samples of each pixel into
four subpixel buffers {bk}, k ∈ {0, 1, 2, 3} in an interleaved way.
Each subpixel buffer are screen sized and manages one quadrant
of a pixel. These subpixel buffers are updated in a round-robin
fashion, i.e. only one per frame.

Reconstructing a subpixel value from the four subpixel buffers in-
volves more work. Note that in the absence of scene motion, these
four subpixel buffers effectively form a higher-resolution frame-
buffer. However, under scene motion, the subpixel samples com-
puted in earlier frames reproject to offset locations. Conceptu-
ally, we forward reproject all the previous samples into the current



Figure 15: Sampling from multiple subpixel buffers. To properly
reconstruct the quadrant value, Yang et al. (2009) use nonuniform
blending weights defined by a tent function centered on the quad-
rant being updated. (a) In the absence of local motion, only the
correct pixel has non-zero weight in the tent, so no resampling blur
is introduced; (b) For a moving scene, the samples are weighted
using the tent function, and higher weights are given to samples
closer to the desired quadrant center to limit the amount of blur.

Figure 16: The main steps of the fragment shader algorithm of
amortized supersampling using subpixel buffers. All steps are per-
formed together in the main rendering pass.

frame, as indicated in Figure 15. Since the reprojected samples may
form an arbitrary pattern, to reconstruct the quadrant value, we ap-
ply a tent weighting function that encompasses the current quadrant
and compute the weighted sum of all the samples that fall under the
support of this function. This effectively helps to reduce the contri-
bution of distant samples and limit the amount of blur introduced.

At each frame, we update one of the subpixel buffers by computing
one new sample per pixel, and combine it with the history value us-
ing the exponential smoothing filter (Equation 6). We then compute
the final color of every pixel by reconstructing from the subpixel
buffers. This uses the similar technique for reconstructing subpix-
els, except that the tent now spans the entire pixel. This process
is illustrated in Figure 16. Note that in the actual implementation,
we do not use forward reprojection. Instead, we apply the RRC
method and reproject the tent back to the previous subpixel buffers.
This has proven to be an reasonable approximation that makes the
reconstruction step more efficient on graphics hardware.

Even when using the subpixel buffers, the reconstruction error may
still exceed the user’s tolerance, especially when small α is applied.

HORSE SCENE

AMSS1x mov (88fps, 23dB) AMSS4x mov (64fps, 31dB)

No AA (140fps, 16dB) Reference AMSS4x still (64fps, 40dB)

Figure 17: Comparison between no antialiasing, amortized super-
sampling (with screen-size cache, and with 2× 2 subpixel buffers),
and the ground-truth reference result for a horse-checkerboard
scene. The 4x still image approaches the quality of the reference
result, whereas the motion result provides an acceptable approxi-
mation without overblurring.

In addition, the antialiased signal may occasionally vary temporally
due to, for example, light and view-dependent effects. Yang et al.
(2009) propose methods to estimate the reconstruction error, as well
as the signal change in real-time, and limit α accordingly such that
a minimum amount of refresh is guaranteed. The reconstruction
error is estimated by deriving an empirical relationship between the
fractional pixel velocity v, α and the error, similar to the purpose
of Equation 4. Signal change, on the other hand, is estimated by a
smoothed residual between the aliased sample and the history value.
The user set thresholds for both errors, and the bounds for α are
computed based on the error values.

Figure 17 shows the result of applying amortized supersampling
with 2× 2 subpixel buffer on a horse-checkboard scene, which in-
cludes an animated wooden horse galloping over a marble check-
ered floor. The result shows significant improvement over the
screen-sized amortized supersampling with only a minor drop of
speed. In fact, the PSNR shows that this technique offers better
quality when compared to the conventional 4 × 4 stratified super-
sampling, which runs at a six times lower framerate.

4.3 Discrete LOD Blending

The idea behind discrete level-of-detail (LOD) techniques is to use
a set of representations with differing complexities (level-of-detail)
for one model and select the most appropriate representation for
rendering at runtime. Complexity can for instance vary in the em-
ployed materials or shaders or in the amount of triangles used. Due
to memory constrains and the effort in creating them only a small
number of LODs is being used and therefore switching from one
representation to another can lead to noticeable popping artifacts.
A theoretical solution would be to switch only when the respective
pixel output of two representations is indistinguishable. This so
called late switching has practical problems. First, it is hard to guar-
antee equality in pixel output for a given view scenario and lighting
without rendering both representations first, which of course de-
feats the purpose. Second, the idea of switching as late as possible
counteracts the potential gain of employing LODs in the first place.
In practice switching is done as soon as ”acceptable”.



Figure 18: LOD interpolation combines two buffers containing the
discrete LODs to create smooth LOD transitions. First and second
column: buffers; last column: combination. The top row shows the
two LODs in red and blue respectively.

A more practical solution to this problem proposed by Giegl and
Wimmer (2006) is to replace the hard switch by a transition phase,
in which the two representations are alpha blended in screen space.

Apart from other problems, this approach requires that the geom-
etry (and the shaders) of both representations have to be rendered
in this transition phase, thereby generating a higher rendering cost
than the higher quality level alone would incur. To circumvent this
Scherzer and Wimmer (2008) have introduced LOD interpolation
(see Figure 18). The idea is that by using TC the two LODs required
during an LOD transition can be rendered in subsequent frames.
Two separate render passes are used to achieve the transition phase
between adjacent LOD representations: Pass one renders the scene
into an off-screen buffer (called LOD buffer). For objects in transi-
tion one of the two LOD representations is used and only a certain
amount of its fragments are rendered (see Figure 19), depending on
were in the transition (i.e., how visible) this object currently is. This
is later repeated in the next frame using the other LOD representa-
tion and rendering into a second LOD buffer. The second pass com-
bines these two LOD buffers (one from the current and one from the
previous frame) to create the desired smooth transition effect.

To determine the number of fragments to render for a given rep-
resentation, so-called visibility textures are used. Each encodes a
visibility threshold function visTex(p) → [0..1] that maps the
object-space coordinate (before any animation is applied) of a given
fragment p to the fragments visibility threshold.

This allows individual fragments to be discarded by comparing the
output of this function to an objects visibility threshold ι. ι encodes
were in the transition phase a representation currently is and is given
by the transition function depicted in Figure 19

Writing this process as a function gives discard : R3 × [0..1] →
{true, false}

discard : (p, ι) 7→ visTex(p) < ι. (7)

Note that even though the visibility function may be continuous, the
thresholding operation gives a binary result and therefore no semi-
transparent pixels appear, which avoids blending and the costly or-
dering of fragments.

By using different visibility textures, one can control in which way
the individual fragments of a given object become visible. Exam-
ples include a uniform noise pattern, a function that decreases from

# fragments

LOD K+1LOD K

distance

all

0
transition

Figure 19: Transition phase from LODk to LODk+1:
left:LODk; middle: midway in the transition all fragments of both
LODs are drawn; right: LODk+1; Below: First LODk+1 is grad-
ually introduced till all its fragments are drawn. Then LODk is
gradually removed by rendering fewer and fewer fragments. The
top two rows show the result of our method and a false color illus-
tration.

the center outward, or any other function best suited to a given ob-
ject. This has the effect that the amount and distribution of the
visible fragments of an object can be controlled (see Figure 20).
Also note that although visTex is given as a 3D function it is often
not necessary to store it in a 3D texture, as can be seen by the noise
texture example.

Figure 20: A uniform noise visibility texture (left) applied to two
different models with visibility ι = 0.5).

4.4 Casting Shadows

Shadows are widely acknowledged to be one of the global lighting
effects with the most impact on scene perception. They are per-
ceived as a natural part of a scene and give important cues about the
spatial relationship of objects.

Due to its speed and versatility, shadow mapping is one of the most
used real-time shadowing approaches. The idea is to first create a
depth image of the scene from the point of view of the light source
(shadow map). This image encodes the front between lit and unlit
parts of the scene. On rendering the scene from the point of view
of the camera each fragment is transformed into this space. Here
the depth of each transformed camera fragment is compared to the
respective depth in the shadow map. If the depth of the camera
fragment is nearer it is lit otherwise it is in shadow (See Figure 21).



Figure 21: If the rasterization of the shadow map changes (here
represented by a right shift), the shadowing results may also
change. On the left three fragments are in shadow, while on the
right five fragments are in shadow. This results in flickering or
swimming artifacts in animations.

4.4.1 Pixel Correct Shadows

The most concerning visual artifacts of this method originate from
aliasing due to undersampling. The cause for undersampling is in
turn closely related to rasterization that is used to create the shadow
map itself. Rasterization uses regular grid sampling for rasteriza-
tion of its primitives. Each fragment is centered on one of these
samples, but is only correct exactly at its center. If the viewpoint
changes from one frame to the next, the regular grid sampling of
the new frame is likely to be completely different than the previous
one. This frequently results in artifacts, especially noticeable for
thin geometry and the undersampled portions of the scene called
temporal aliasing.

This is especially true for shadow maps. Due to shadow map fo-
cusing, a change in the viewpoint from one frame to the next also
changes the regular grid sampling of the shadow map. Additionally
the rasterized information is not accessed in the original light-space
where it was created, but in eye-space, which worsens these arti-
facts. This frequently results in temporal aliasing artifacts, mainly
flickering (See Figure 21).

The main idea in Scherzer et al. (2007) is to jitter the view port
of the shadow map differently in each frame and to combine the
results over several frames, leading to a higher effective resolution.

Exponential smoothing as described above is employed here on the
shadow map tests st[p]. This serves a dual purpose. On the one
hand temporal aliasing can be reduced by using a big smoothing
factor. On the other hand, the shadow quality can actually be made
to converge to a pixel-perfect result by optimizing the choice of the
smoothing factor.

The smoothing factor allows balancing fast adaption on changing
input parameters against temporal noise. With a bigger smoothing
factor, the result depends more on the shadow results result from
the current frame and less on older frames and vice versa. The
smoothing factor is now determined according to the confidence of
the shadow lookup. The confidence is defined to be higher if the
lookup falls near the center of a shadow map texel, since only near
the center of shadow map texels it is very likely that the sample
actually represents the scene geometry (see Figure 23 and 22). In

Figure 22: LiSPSM (left) gives good results for a shadow map
resolution of 10242 and a view port of 1680 × 1050, but temporal
reprojection (middle) can still give superior results because it uses
shadow test confidence, defined by the maximum norm of shadow
map texel center and current pixel (right).

the paper the maximum norm of the current pixel p and the shadow
map texel center c is used to account for this

conf = (1−max (|px − cx| , |py − cy|) · 2)m , (8)

but other norms could be used as well. The parameter m defines
how strict this confidence is applied. m < 4 results in fast updates
were most shadow map lookups of the current frame have a big
weight and the resulting shadow has noisy edges. m > 12 results
in accurate but slow updates were most lookups from the current
frame have small weight. The authors found out that m should be
balanced with camera movement. When the camera moves fast m
can be small because noise at the shadow borders is not noticed
(the human eye integrates the motion anyway). Only for a slowly
moving camera or a still image are higher values of m necessary.

This confidence can now be directly used in the exponential
smoothing formula

ft[p]← (conf)st[p] + (1− conf)ft-1
(
πt-1(p)

)
. (9)

Figure 23: Shadow adaption over time of an undersampled uniform
shadow map after 0 (top-left), 1 (top-middle), 10 (top-right), 20
(bottom-left), 30 (bottom-middle) and 60 (bottom-right) frames.

4.4.2 Soft Shadows

In reality most light sources are area light sources and hence most
shadows exhibit soft borders. Light source sampling introduced by
Heckbert and Herf (1997) creates a shadow map for every sample
(each on a different position on the light source) and calculates the
average (= soft shadow) of the shadow map test results si for each
pixel (see Figure 24). Therefore, the soft shadow result from n
shadow maps for a given pixel p can be calculated by

ψn(p) =
1

n

n∑
i=1

si(p). (10)

The primary problem here is that the number of samples (and there-
fore shadow maps) to produce smooth penumbrae is huge and there-
fore this approach is slow. Typical methods for real-time applica-
tions approximate an area light by a point light located at its center



and use heuristics to estimate penumbrae, which leads to soft shad-
ows that are not physically correct. Here overlapping occluders can
lead to unnatural looking shadow edges, or large penumbrae can
cause single sample soft shadow approaches to either break down
or become very slow

Figure 24: Light sampling with 1, 2, 3 and 256 shadow maps (left
to right).

The main idea of Scherzer et al. (2009) is to formulate light source
area sampling in an iterative manner, evaluating only a single
shadow map per frame. Reformulating Equation 10 gives

ψ(p) =
s(p) + Σ(p)

n(p) + 1
Σ(p) =

n(p)∑
i=1

si(p). (11)

were s(p) is the hard shadow map result for the current frame and
pixel and n(p) is the number of shadow maps evaluated until the
last frame for this pixel. Note that now n depends on the current
pixel because dependent on how long this pixel has been visible, a
different number of shadow maps may have been evaluated for this
pixel. Calculation of this formula is straight forward if n(p) and
Σ(p) are stored in a buffer (another instance of the RRC). With
this approach, the soft shadow improves from frame to frame and
converges to the true soft shadow result if pixels stay visible ”long
enough” (see Figure 25, upper row).

Figure 25: Convergence after 1,3,7,20 and 256 frames; upper row:
sampling of the light source one sample per frame; lower row: soft
shadows with TC.

In praxis this can result in temporal aliasing for small n. Care has
to be taken how to manage those cases. When a pixel becomes
newly visible and therefore no previous information is available in
the RRC, a fast single sample approach (PCSS with a fixed 4x4
kernel) is employed to generate an initial soft shadow estimation for
this pixel. For all other n the expected standard error is calculated
and if it is above a certain threshold (expected fluctuation in the soft
shadow result in consecutive frames) a depth-aware spatial filter is

Figure 26: Structure of the soft shadows with TC algorithm.

employed to take information from the neighborhood in the RRC
into account (see Figure 26). This approach largely avoids temporal
aliasing and can be nearly as fast as hard shadow mapping if all
pixels have been visible for some time and the expected standard
error is small enough (see Figures 25 and 27).

Figure 27: Left side: soft shadows with TC; right side: PCSS
16/16; Overlapping occluders (upper row) and bands in big penum-
bras (lower row) are known problem cases for single sample ap-
proaches.

4.5 Global Illumination

4.5.1 Screen-Space Ambient Occlusion

Ambient occlusion (Cook and Torrance, 1981) is a cheap but effec-
tive approximation of global illumination which shades a pixel with
the percentage of the hemisphere that is blocked. It can be seen as



the diffuse illumination due to the sky (Landis, 2002). Ambient
occlusion of a surface point p with normal np is computed as

AO(p,np) =
1

π

∫
Ω

(np · ω)V (p,ω) dω, (12)

where Ω denotes all directions on the hemisphere and V is the (in-
verse) binary visibility function, with V (p,ω) = 1 if the visibility
in this direction is blocked by an obstacle, 0 otherwise.

Screen-space ambient occlusion (SSAO) methods, as first intro-
duced by Mittring (2007) sample the frame buffer as a discretization
of the scene geometry. We assume that any SSAO method can be
written as an average over contributionsC which depend on a series
of samples si:

SSAOn(p) =
1

n

n∑
i=1

C(p, si) (13)

In order to approximate equation 12 using Monte Carlo integration,
the contribution function for SSAO is usually

C(p, si) = V (p, si) max( cos(si − p,np), 0). (14)

In contrast to equation 12, directions have been substituted by ac-
tual sample points around p, and thus V (p, si) is now a binary
visibility function that gives 0 if si is visible from p and 1 other-
wise. A depth test of the current sample si determines its visibility
V . Several variants of SSAO have been proposed since (Fox and
Compton, 2008; Bavoil et al., 2008; Szirmay-Kalos et al., 2010).

The quality of SSAO can be significantly improved with TC, as
was already shown in commercial games (Smedberg and Wright,
2009). This is due to the beneficial properties of SSAO, i.e., its in-
variance from light source and view direction and the local support
of the SSAO kernel. Previously computed SSAO samples can be
cached and reused with reverse reprojection. In the following we
will discuss the method of Mattausch et al. (2010), who focus on
improving the SSAO quality, and optionally allow for some perfor-
mance optimization by using less samples in sufficiently converged
regions.

Refining the SSAO solution over time First we discuss the
SSAO accumulation scheme. In frame f , a new contribution Ct
is calculated from k new samples:

Ct(p) =
1

k

jt(p)+k∑
i=jt(p)+1

C(p, si), (15)

where jf (p) counts the number of unique samples that have already
been used in this solution. We combine the new contribution with
the previously computed solution:

SSAOt(p) =
wt−1(pt−1)SSAOt−1(pt−1) + kCt(p)

wt−1(p) + k
(16)

wt(p) = min(wt−1(pt−1) + k,wmax). (17)

The weight wt−1 represents the number of samples that have al-
ready been accumulated in the solution, until wmax has been
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Figure 28: The distance of p to sample point s2 in the current
frame differs significantly from the distance of pt−1 to s2t−1 in the
previous frame, hence we assume that a local change of geometry
occurred, which affects the shading of p.

reached. This predefined maximum ensures that the influence of
older contributions decay over time (note that the solution con-
verges very quickly) and controls the refresh rate.

Detecting changes Special attention must be paid to the detec-
tion of cache misses (i.e., pixels with an invalid SSAO solution) due
to dynamic changes. In order to benefit from TC in fully dynamic
scenes, we have to efficiently detect and handle such cache misses.
A cached value of a pixel is invalid if either one of the following
three conditions has occurred: 1) a disocclusion of the current pixel,
2) the pixel was previously outside the frame buffer, 3) a change in
the sample neighborhood of the pixel. Case 1) and case 2) can be
handled like conventional cache misses as described previously in
Section 3.2.2. However, we additionally have to check for case 3),
because the shading of the current pixel can be affected by nearby
moving objects within the sampling radius. Consider for example a
scenario where a box is lifted from the floor. The SSAO values of
pixels in the contact shadow area surrounding the box change, even
if there is no disocclusion of the pixel itself.

Checking the complete neighborhood of a pixel would be pro-
hibitively expensive, and therefore we use sampling. Fortunately
we already have a set of samples, namely the ones used for AO
generation. That means that we can effectively use our AO sam-
pling kernel for two purposes: for computing the current contri-
bution Ct(p) and to test for validity. A measure for validity of a
sample si for shading a pixel p can be estimated by computing the
change in relative positions of a sample and pixel (as illustrated in
Figure 28):

δ(si) = ||si − p| − |sit−1 − pt−1||. (18)

We only have to use those samples for the neighborhood test that lie
in front of the tangent plane of p, since only those samples actually
modify the shadow term. Note that we could additionally check if
the angle between surface normal and vector to the sample point
has changed by a significant amount from one frame to the next.



Figure 29: Confidence values computed by our smooth invalidation
technique for a rotating object (left), a translating object (middle),
and an animated character (right). We use a continuous scale from
red (confidence=0) to white (confidence=1).

Figure 30: Moving dragon model using no invalidation (left, caus-
ing artifacts in the shadow), a high invalidation factor (middle,
causing noise), an invalidation factor set to a proper value (right,
no artifacts).

However, this would require to store the surface normal of every
pixel in the previous frame.

Smooth invalidation Consider for example a slowly deforming
surface, where the SSAO will also change slowly. In such a case it
is not necessary to fully discard the previous solution. Instead we
introduce a new continuous definition of invalidation that takes a
measure of change into account. This measure of change is given
by δ(si) at validation sample position si, as defined in Equation 18.
In particular, we compute a confidence value conf(si) between 0
and 1. It expresses the degree to which the previous SSAO solution
is still valid:

conf(si) = 1− 1

1 + Sδ(si)
. (19)

The invalidation factor S is a parameter which controls the smooth-
ness of the invalidation. The overall confidence in the previous
SSAO solution is given by

conf(p) = min(conf(s0), .., conf(sk)). (20)

This value is used to attenuate the weight wt given to the previous
solution (refer to Equation 17). Figure 29 depicts a visualization of
conf for different types of movements. Figure 30 shows the effect
of the smooth invalidation factor on a scene with a translational
movement. Setting the invalidation factor S to (15 ≤ S ≤ 30)
usually gives good results.

A comparison of conventional SSAO with TSSAO is shown in Fig-
ure 31. The noisy appearance of a coarse SSAO solution that uses
only a few samples (image a) can be improved with a screen-space
spatial discontinuity filter. However, the result of this operation can
be quite blurry (image b). As long as there is a sufficient history for
a pixel, temporal SSAO (TSSAO) produces smooth but crisp SSAO
without depending on heavy post-processing (image c).

Note that for TSSAO, spatial filtering only has to be applied in re-
gions of change. This is done scaling the filter radius with a mea-
sure of the inverse convergence 1 − wn/wmax. The results of the

Figure 31: SSAO without TC using 32 samples per pixel with (a)
a weak blur, (b) a strong blur (both 23 FPS), (c) temporal SSAO
using 8–32 samples (initially 32, 8 in a converged state) (45 FPS).
(d) Reference solution using 480 samples (2.5 FPS). The scene has
7M vertices and runs at 62 FPS without SSAO.

filtering can be further improved by making it convergence-aware,
i.e., assigning higher weights to sufficiently converged filter sam-
ples.

4.5.2 Imperfect Shadow Maps

Instant radiosity (Keller, 1997) is a hardware-friendly global illumi-
nation method that computes so called virtual point lights (VPLs)
along the intersections of a light path with a surface, and uses them
for indirect scene illumination. The visibility is resolved by com-
puting a shadow map for each VPL. The shadow map computa-
tion is also the main bottle neck of the algorithm, as it requires to
sample the scenes many times for a reasonable number of VPLs.
This drawback prevents real-time frame rates even when restricted
to first-bounce global illumination.

Based on the observation that exact visibility is not required for
low-frequency global illumination, Ritschel et al. (2008) proposed
to use a coarse point-based scene representation instead. These im-
perfect shadow maps allow hundreds of shadow map-based visi-
bility queries per frame in interactive time. However, even such a
large number of queries are insufficient to avoid typical undersam-
pling artifacts, e.g., resulting in flickering between frames if the
VPLs are recomputed.

Knecht et al. (2010) combines the imperfect shadow mapping ap-
proach with temporal reprojection. He manages to improve the
quality and reduce the before mentioned artifacts (refer to Fig-
ure 32). The main problem of using TC for global illumination is
the global nature of changes of the lighting conditions and the scene
configuration. Knecht chose to use a non-binary threshold similar
to the smooth invalidation technique for temporal SSAO (refer to
Section 4.5.1). In particular, the confidence into a previous solution
is guided by the amount of change of a pixel between the previous
and current frame. The following measures are used in order to
evaluate a confidence value conf :



Figure 32: Imperfect shadow maps still show some artifacts with
256 VPLS, which can be smoothed out using TC (Knecht, 2009).

εpos = ||(xt − xt−1; yt − yt−1; dt − dt−1)wp||
εnorm = (1− n · nprev)wn

εill = saturate(||It − It−1||3)wi

conf = saturate(1−max(εpos; εnorm; εill))cB (21)

The first equation computes a distance value using screen-space po-
sition and depth, the second equation takes the differences in the
normals into account, the third the difference in the illumination
values. The weights wp, wn, and wi are highly scene dependent.
The final confidence is computed as the maximum of these mea-
sures multiplied with some base confidence cB , and then used as
the weight of a standard exponential smoothing operation. Due to
the low frequency nature of indirect illumination, the motion blur
like artifacts caused by moving light sources and animated objects
are not very distracting in the general case.

4.6 Spatio-Temporal Upsampling

In many rendering applications, spatial coherence also exists within
the shading signal, especially with low-frequency diffuse shading.
Herzog et al. (2010) propose a spatio-temporal upsampling tech-
nique that exploits both spatial and temporal coherence for shad-
ing acceleration. The spatial coherence part follows the geometry-
aware upsampling (Yang et al., 2008) method, which computes the
entire screen in lower resolution, and then uses a joint-bilateral filter
to upsample the shading result to full resolution. The joint-bilateral
filter takes normal and depth difference between the low-resolution
samples and the desired pixel as the “range” weight, which gives
preference to the samples from the same geometry piece during up-
sampling. This helps to avoid blurring artifacts.

In the technique proposed by Herzog et al. (2010), shading is al-
ways computed in lower density than the screen resolution (e.g.
1/4×1/4). In every frame, 1/16 samples on the screen are shaded
in an interleaved way (Keller and Heidrich, 2001; Segovia et al.,
2006). This effectively reduces the shading cost in a spatially con-
sistent manner that facilitates upsampling. The newly shaded sam-
ples are upsampled as in Yang et al. (2008), keeping the bilateral
weights. Then the previously stored payload (with full resolution)
is reprojected to the current frame, and blend with the upsampled
new contribution using

ft(p) =
h̃(p)w̃(p) + wfwt-1(πt-1(p))ft-1(πt-1(p))

w̃(p) + wfwt-1(πt-1(p))
, (22)

where ft(p) is the payload value of pixel p at frame t, h̃ is the up-
sampled new shading result with summed bilateral weights w̃(p),
ft-1(πt-1(p)) is the reprojected cache payload value, wf is the
temporal fading factor, and wt-1(πt-1(p)) is the spatio-temporal
weight, storing a confidence value of ft-1(πt-1(p)).

Figure 33: Spatio-temporal upsampling applied to a fully dynamic
scene with complex indirect shading and ambient occlusion com-
puted in real time (Herzog et al., 2010).

This equation is essentially similar to the exponential smoothing
equation (Equation 6) that we see previously in many other appli-
cations. However, there are multiple factors that adjust the weights.
We first notice that with the bilateral weight w̃(p), the pixels that
are close to the recomputed pixels receive more weights than its
neighbors. This leads to a smooth update of the recomputed pixels.
The spatio-temporal weight wt-1(πt-1(p)) on the other hand repre-
sents how much information has been accumulated in the cache. It
can be viewed as a confidence of the cache payload, and is recom-
puted every frame after the payload refresh according to the blend-
ing weights in the equation. Finally, the temporal fading factor con-
trols the exponential smoothing rate and is dynamically adjusted ac-
cording to estimated temporal gradient. This helps to achieve quick
response to fast shading signal changes.

The technique improves over spatial upsampling in that undersam-
pled information in the low-resolution shading result can be recov-
ered from previous frames. It was implemented on a deferred shad-
ing renderer and tested using several computationally expensive
scenes (Herzog et al., 2010). Figure 33 demonstrates the method
achieving significant improvement in speed (11×) without much
sacrifice in quality. It combines the benefits of both spatial upsam-
pling and temporal reprojection and only introduces a small perfor-
mance overhead.

5 Temporal Coherence in Object Space

Besides algorithms for pixel reprojection, TC can also be used to
speed up algorithms that operate in object space. For example, TC
is often utilized to speed up culling techniques like view frustum
culling and online occlusion culling. TC can also be exploited for
other purposes, e.g., to achieve real-time global illumination based
on the instant radiosity algorithm proposed by Keller (1997). In this
section, we discuss some of these uses of TC.

5.1 Temporal Coherence in Culling Techniques

View-frustum culling and visibility culling are important accelera-
tion techniques for real-time rendering. View-frustum culling sim-
ply prunes all objects in the scene which don’t intersect the current
view frustum. Visibility culling aims to prune all objects that are in-
visible because of occlusion due to other objects as early as possible
in the pipeline. Visibility culling enables us to achieve the important
property of output-sensitivity, i.e., the render time depends only on
the complexity of the actual output, not the scene complexity (refer
to Figure 34). Traditionally many rendering engines use prepro-
cessed visibility and compute potentially visible sets (PVSs) for a
set of view cells in a lengthy offline step. However, recent advances
arguably make online occlusion culling (computing visibility on the
fly for the current view point) a more attractive choice. Online oc-



Figure 34: (left) Using visibility culling, we send only the visible
buildings bordering to the street (shown as red roofs in the small
overview window) to the GPU for a low view point. (right) This is
only a fraction of the buildings rendered for a high view point.

clusion culling does not require to preprocess and store visibility
information, and naturally allows for dynamic scenes. The major
challenge is to reduce the overhead produced by the online visibil-
ity calculations.

To accelerate culling techniques like view frustum culling and on-
line occlusion culling, TC is extensively used. It’s importance, in
particular for online occlusion culling, cannot be stressed enough -
in fact utilizing TC is one of the key concepts to make online occlu-
sion culling feasible in practice. The other key concept are spatial
hierarchies, in order to reduce the complexity of the traversal al-
gorithm from O(n) to O(log(n)) in the number of visible objects
n.

As proposed by Assarsson and Möller (2000), it is beneficial to use
temporal coherence to speed up the plane tests for view frustum
culling. A fast rejection of a bounding box is possible because it
is very likely that a bounding box that was outside a plane in the
previous frame is still outside in the current frame.

Due to TC, most objects that where visible in the previous frame
are also visible in the current frame. Querying the visibility of these
objects will result in many wasted tests and potentially cause sig-
nificant overhead, which is not acceptable in practical applications
like games. For example, consider an extreme scenario where ev-
erything is visible and nothing can be culled. Furthermore, culling
can be only effective if there is something that we can cull against.
An approximate front-to-back ordering of objects helps in this re-
gard, but in many cases will fail to capture the visibility relations.

This observation leads to the following general strategy, which
is implemented in different forms by all state-of-the-art occlusion
culling algorithms: We first establish a visible front of those objects
that were visible in the previous frame without expensive testing,
assuming that they stay visible. Afterwards, we query the visibility
the remaining objects against this visible front, assuming that these
stay invisible. To keep the overdraw low, we also have to update the
visibility classifications of the object from the visible front. This
can be done in a lazy manner, assuming that there is coherence over
several frames.

The clever hierarchical z-buffer algorithm proposed by Greene et al.
(1993) uses both spatial hierarchies and TC for maximal efficiency.
To accelerate visibility queries, it maintains a two-fold hierarchy -
an image pyramid over the z-buffer and an octree hierarchy over
the objects, as well as TC to establish the visible front. The feasi-
bility of this algorithm suffered from the drawback that only parts
of it have been supported by the hardware until now. The conceptu-
ally related algorithm of Zhang et al. (1997) aimed to speed up the
queries by utilizing fast texture hardware.

Coherent Hierarchical Culling

1 CHC begin
2 DistanceQueue.push(Root); / / i n i t i a l i z e t r a v e r s a l
3

4 while !DistanceQueue.Empty() ||
5 !QueryQueue.Empty() do
6 / /−− f i r s t p a r t : h a n d l e q u e r i e s
7 while !QueryQueue.Empty() &&
8 FirstQueryFinished()) do
9 N = QueryQueue.Dequeue();

10 if Q.visible then PullUpVisibility(N);
11

12 / /−− second p a r t : h a n d l e t r a v e r s a l
13 if !DistanceQueue.Empty() then
14 N = DistanceQueue.DeQueue();
15

16 if InsideViewFrustum(N) then
17 wasVisible = N.visible;
18 N.visible = false; / / r e s e t c l a s s i f i c a t i o n
19 / / que ry p rev . i n v i s i b l e nodes and l e a v e s
20 if !wasVisible && IsLeaf(N) then
21 IssueOcclusionQuery(N);
22 QueryQueue.Enqueue(N);
23 / / a lways t r a v e r s e p rev . v i s i b l e nodes
24 if (wasVisible) then TraverseNode(N);
25 end CHC
26

27 TraverseNode(N) begin
28 if IsLeaf(N) then
29 Render(N);
30 else
31 DistanceQueue.PushChildren(N);
32 end TraverseNode
33

34 PullUpVisibility(N) begin
35 while !N.IsVisible do
36 N.IsVisible = true; N = N.Parent;
37 end PullUpVisibility

Figure 35: Listing of the coherent hierarchical culling (CHC) al-
gorithm.

5.1.1 Hardware Occlusion Queries

Despite these interesting research efforts, online occlusion culling
was mostly considered too costly for practical usage before ded-
icated hardware support for occlusion queries existed. A turning
point came when hardware acceleration for occlusion queries were
finally available for consumer graphics hardware, which simply re-
turns the number of visible pixels of the queried geometry. For ren-
dering acceleration they are used conservatively, by querying the
visibility of a simple proxy geometry (e.g., the axis aligned bound-
ing box of an object). After the introduction of hardware accel-
erated occlusion queries, the potential of online occlusion culling
gained the attention of both the research community and the in-
dustry, and opened the field for a variety of algorithms (Klosowski
and Silva., 2001; Hillesland et al., 2002; Govindaraju et al., 2003;
Staneker et al., 2004). However, the queries still come with a non-
negligible cost, and algorithms have to find a way to fill the latency
until the result returns in a meaningful way. A naive hierarchical
implementation which waits for the query result at each node be-
fore further traversing a hierarchy can actually slow down rendering
significantly due to the idle time of GPU and CPU – this is where
TC comes into play.



5.1.2 Coherent Hierarchical Culling (CHC)

The coherent hierarchical culling (CHC) algorithm by Bittner et al.
(2004) utilizes TC to avoid the idle time caused by the synchronisa-
tion between the CPU and the GPU based occlusion queries. This
algorithm is rather simple and intuitive and provides good perfor-
mance in most cases. A listing of the (slightly simplified) CHC
algorithm is shown in Figure 35. The algorithm works for any
underlying type of spatial hierarchy (e.g., bounding volume hier-
archy (BVH), kD-tree, octree), only assuming that the objects are
stored in the leaves. In our experiments BVH (using the surface-
area heuristics (Havran, 2000) for construction) turned out to be a
good choice.

The CHC algorithm traverses nodes in a front-to-back order. In or-
der to exploit TC, nodes that were visible in the last frame are still
assumed visible in the current frame and vice-versa. Hence we al-
ways wait for the query result of a previously invisible node. Like-
wise, previously visible nodes are always traversed and rendered in
the current frame (line 24 in the listing). In the original CHC al-
gorithm a query is always issued for previously visible nodes (line
21), but we do not wait for the result. For this purpose the pend-
ing queries are managed in a dedicated query queue (lines 7–10).
Fortunately, graphics hardware provides a cheap way to test if a
query result is available (the FirstQueryFinished() function in line
8).Once the query result is available we use it for the visibility clas-
sification in the next frame. This way, both CPU and GPU are kept
busy while waiting for query results. The algorithm further exploits
(spatial) coherence by identifying invisible subtrees. This is han-
dled by automatically setting a node to invisible (line 18) and then
pulling up the classification of visible nodes (line 10). This way,
the visibility of many previously invisible leaf nodes can be decided
with a single query.

A problem of the original CHC algorithm is the high number of
wasted occlusion queries (i.e., queries that report an object to be
visible or queries that are more costly than rendering the node it-
self), which induce an overhead and make CHC noticeable slower
than view-frustum culling for view points where most of the scene
is visible. To reduce the number of queries for previously visible
nodes, the authors suggested to test previously visible nodes only
every number of frames.

5.1.3 Near Optimal Hierarchical Culling (NOHC)

The near optimal hierarchical culling (NOHC) algorithm (Guthe
et al., 2006) computes the probability that a node will stay visible
based on a statistical model of the estimated screen coverage due
to objects rendered previously in the current frame. The expected
value for accumulated screen coverage cscr after i + 1 rendered
objects is computed as

cscr(Oi+1) = cscr(Oi) + (1− cscr(Oi))c(Oi), (23)

where C(Oi) is the estimated screen coverage of object Oi. The
feasibility of a query is then decided using a sophisticated cost
model that takes the probability that a node is still visible into ac-
count, and weights it with the cost of a query versus the cost of
rendering an object. These quantities are measured during an of-
fline hardware calibration step that samples different parameters
like time required for rasterization or time required for transfor-
mation.

Note that, this calibration model still does not take the complex
interaction of queries and objects during rendering into account,
and the fact that much of the overhead of a query is caused by GPU
render state changes that happen during this interaction. I.e., when

Figure 36: Different queues used by the CHC++ algorithm. The
queues which were not used by the CHC algorithm are highlighted
in blue. Previously invisible / visible nodes are depicted in red /
green. The multiple nodes in the query queue indicate multiqueries.

changing between render mode and query mode, at least depth write
must be turned on and off on the GPU, which can accumulate to
significant overhead for many of queries, depending on the cost of
these state changes on the target hardware.

5.1.4 Coherent Hierarchical Culling Revisited (CHC++)

The CHC++ algorithm (Mattausch et al., 2008) addresses the before
mentioned drawbacks while keeping the structure of the original
CHC algorithm. It was especially designed to fit the demands of
modern rendering engines like Ogre3D. Unlike NOHC, it does not
rely on hardware calibration. CHC++ aims to a) reduce the overall
number of queries and b) reduce the query overhead (e.g., due to the
induced state changes) by making better use of temporal and spatial
coherence of visibility. It extends the CHC algorithm with a couple
of simple optimizations like adaptive visibility prediction and query
batching. As a result of the new optimizations, the number of issued
occlusion queries and the number of rendering state changes are
significantly reduced, leading to a speedup of 2-3 times compared
to the previous state-of-the-art. The most important of them are:

Queues for batching of queries. Before a node is queried, it is ap-
pended to a queue. Separate queues are used for accumulating pre-
viously visible and previously invisible nodes. We use the queues to
issue batches of queries instead of individual queries. This reduces
state changes by one to two orders of magnitude.

Multiqueries. CHC++ compiles multiqueries, which are able to
cover more nodes by a single occlusion query. This method is able
to reduce the number of queries for previously invisible nodes up to
an order of magnitude by making better use of TC. The decision of
including a node in a multiquery is based on its history. I.e., nodes
that were invisible for a long time are likely to stay invisible, hence
they can be handled by a single query. Note that the nodes can be
spatially unrelated.

Randomized sampling pattern for visible nodes. The algo-
rithm applies a temporally jittered sampling pattern for schedul-
ing queries for previously visible nodes. This reduces the number
of queries for visible nodes and while spreading them evenly over
the frames of the walkthrough. This way frame rate drops can be
avoided that happen because of many queries being issued in the
same frame, caused by aligned visibility events.

An overview of the queues used in CHC++ can be seen in Fig-
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Figure 37: Comparison of view frustum culling (VFC), coher-
ent hierarchical culling (CHC), near optimal hierarchical culling
(NOHC), and CHC++, showing a problematic view point for CHC.
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Figure 38: Comparison of view frustum culling (VFC), view
frustum culling and potentially visible sets (VFC+PVS), and
CHC++ (Bittner et al., 2009).

ure 36. As it keeps the original structure of the CHC algorithm
(refer to listing 35), an existing CHC implementation can be ex-
tended to CHC++ in a straightforward fashion. Like CHC, it uses
a query queue to manage the pending queries and a traversal queue
for the front-to-back traversal of the spatial hierarchy. CHC++ al-
locates two additional queues for batching previously visible and
invisible nodes. Furthermore, CHC++ has a mechanism for multi-
queries which allows queries over multiple nodes.

Note that the batching is a very simple optimization which, accord-
ing to our experiments, improves the performance the most. Hence
programmers are advised to take the CHC algorithm, and start by
extending it with the batching optimization. The separation into two
queues makes sense because previously visible node queries have
no dependencies as we do not suspend rendering until the query re-
sult is available. Hence previously visible nodes can be queried at
any time, for example to fill up wait time, or the queries can even
be issued after the main algorithm and the query results fetched in
the beginning of the next frame.

A performance comparison of view frustum culling with the occlu-
sion culling algorithms CHC, NOHC, and CHC++ in the Power-
plant scene (12M triangles) is shown in Figure 37 (using a NVIDIA
GeForce 8800 GTX). This plot shows a difficult view point where
CHC has noticeable overhead. The hardware calibration process
of NOHC brings some improvements, while the enhancements of
CHC++ bring even more.

Figure 38 shows timings in the Powerplant scene (using a NVIDIA
GeForce 280 GTX). Interestingly, online occlusion culling with
CHC++ is faster than rendering based on potentially visible sets
(PVSs) in this walkthrough. In moderately to highly occluded sce-
nario, the overhead of the online occlusion culling algorithm typi-

Figure 39: (Left) Instant radiosity shoots paths from the light
source, and creates virtual point lights at the intersection with ge-
ometry. (Middle) Using shadow maps, the visibility of each VPL
and their contribution to the current image is determined. (Right)
Temporal coherence: When the view point or light source moves,
one of the VPLs becomes invisible from the light source, all the oth-
ers are reused (Laine et al., 2007).

cally is less than the overhead caused by the greater conservativity
of preprocessed visibility (note that view cells under a certain size
are not feasible).

As a conclusion, we can state that online occlusion culling is at
least comparable to PVS-based rendering for common scenarios
and should be considered as a viable alternative to time-consuming
preprocessing by developers. Still it has to be mentioned that the
overhead due to idle time cannot be completely avoided by these
conservative occlusion culling algorithm. I.e., it can happen that
all rendering commands for the previously visible nodes have been
issued, but rendering of the visible front is not yet finished. Then
we have to wait for the query result of the next previously invisi-
ble node. To achieve online occlusion culling algorithm with ne-
glectable overhead, we would have to give up conservativity and
accept a latency of a single frame.

5.2 Incremental Instant Radiosity

Laine et al. (2007) exploit TC to reach real-time frame rates in an-
other variation of the instant radiosity algorithm (described in Sec-
tion 4.5.2). For the sake of performance, the authors restrict their
method to compute first bounce indirect illumination. Still hun-
dreds virtual point lights are needed for convincing global illumi-
nation, and each VPL requires a shadow maps of for visibility com-
putation. While Ritschel et al. (2008) addresses this problem by
using simplified shadow map representations, this algorithm heav-
ily utilizes TC to achieve real-time frame rates. In particular, they
reuse the valid VPLS from the last frame and recomputing only a
budget of invalid shadow maps in a frame. The validity of each
VPL is tested with a ray caster. The algorithm uses a 2D Delaunay
triangulation to manage the VPL distribution. The main task is to
keep a good distribution of VPLs in every frame. When choosing
the location of new VPLs, the method minimizes dispersion, which
is computed as the radius of the largest empty circle that contains
no sample points. The algorithm is visualized in Figure 39.

Note that the method is conceptually similar to the occlusion culling
algorithms discussed in the previous section. The visibility is as-
sumed to change slowly, and hence a lazy update strategy is chosen
(in fact, the method could be seen as a special kind of visibility
algorithm itself). While the parameters settings affect only the ren-
dering speed in case of the discussed occlusion culling algorithms,
both performance and rendering quality are affected here. The al-
gorithm captures changes in the scene with a certain latency, and
shadows cast from dynamic objects are not supported. The authors
report a speedup from 1.4–6.8 for different scenes and resolutions.
In their tests, they fixed the number of VPLS to 256 and the recom-
putation budget to 4–8 VPLs.



6 Conclusions

In this course notes we have described the use of TC for real-time
rendering. Due to the rigorous time constrains in real-time render-
ing we want to reuse resources and previous calculations as much as
possible to compute the best possible quality within the small time
slot between consecutive frames. We have shown that in general
the coherence between frames is very high – hence a high poten-
tial for rendering acceleration and quality improvement exists. This
potential was recognised almost from the beginning of computer
graphics research and many clever methods have been proposed.
However, most of the earlier works are designed for offline and
CPU based rendering systems. Hence they are either too compli-
cated for real-time use or fail to exploit the massive parallelism of
modern graphics hardware.

The way to employ TC in real-time rendering was introduced with
real-time reverse reprojection, a screen-space approach that allows
to cache and reuse shading results from previous frames. This
method is efficient on modern GPUS, simple to implement, and
general in the sense that it can be used for a variety of different
shading effects. It opens many possibilities to accelerate existing
algorithms, and to implement costly shading effects in real-time
by spreading out computations over time. We have also discussed
limitations and the errors that are introduced due to repeated re-
sampling. A number of practical applications using this scheme are
discussed in detail, including multi-pass effects, amortized super-
sampling, LOD blending, shadows and global illumination acceler-
ation. Overall, real-time reprojection can be of great value to game
developers and it pays off to examine existing algorithms for their
suitability for conversion into versions that use TC.

Besides from screen-space reprojection we have described meth-
ods that use TC in object space, mainly for the purpose of visibility
culling. These methods are mainly concerned with avoiding wast-
ing queries and algorithm time by predicting the visibility classifi-
cation based on previous frames. We have shown that those meth-
ods can significantly improve performance without any preprocess-
ing or restrictions to the scene configurations. Additionally, a prac-
tical method was presented that uses object-space TC to achieve
full-fledged global illumination in real time.

We believe that the possibilities of using TC for real-time rendering
have not yet been exploited. The research potential mainly lies in 2
directions: 1) to make the current TC operations more robust, avoid
artifacts, and make better use of the available TC, and 2) to find
new algorithms and fields that can benefit from TC. A big potential
may also lie in better exploitation of combined spatial and temporal
coherence techniques. We think this is a fast emerging direction
in the real-time rendering field and we hope this course will help
conveying the idea and inspire new research in the area.
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