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Abstract
Nowadays, there is a strong trend towards rendering to higher-resolution displays and at high frame rates. This
development aims at delivering more detail and better accuracy, but it also comes at a significant cost. Although
graphics cards continue to evolve with an ever-increasing amount of computational power, the speed gain is easily
counteracted by increasingly complex and sophisticated shading computations. For real-time applications, the
direct consequence is that image resolution and temporal resolution are often the first candidates to bow to the
performance constraints (e.g., although full HD is possible, PS3 and XBox often render at lower resolutions).

In order to achieve high-quality rendering at a lower cost, one can exploit temporal coherence (TC). The underlying
observation is that a higher resolution and frame rate do not necessarily imply a much higher workload, but a
larger amount of redundancy and a higher potential for amortizing rendering over several frames. In this survey,
we investigate methods that make use of this principle and provide practical and theoretical advice on how to
exploit temporal coherence for performance optimization. These methods not only allow incorporating more
computationally intensive shading effects into many existing applications, but also offer exciting opportunities for
extending high-end graphics applications to lower-spec consumer-level hardware. To this end, we first introduce the
notion and main concepts of TC, including an overview of historical methods. We then describe a general approach,
image-space reprojection, with several implementation algorithms that facilitate reusing shading information across
adjacent frames. We also discuss data-reuse quality and performance related to reprojection techniques. Finally, in
the second half of this survey, we demonstrate various applications that exploit TC in real-time rendering.

Categories and Subject Descriptors (according to ACM CCS):
Computer Graphics [I.3.3]: Picture/Image Generation—Display algorithms; Viewing algorithms;
Computer Graphics [I.3.7]: Three-Dimensional Graphics and Realism—Color, shading, shadowing, and texture;

Keywords: anti-aliasing, frame interpolation, global illumination, image-based rendering, large data visualization,
level-of-detail, non-photo-realistic rendering, occlusion culling, perception-based rendering, remote rendering,
sampling, shadows, streaming, temporal coherence, upsampling

1 Introduction

In order to satisfy the ever increasing market demand for
richer gaming experiences, developers of real-time rendering
applications are constantly looking for creative ways to fit in-
creased photo-realism, frame rates, and resolution within the
computational budget offered by each new graphics-hardware
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generation. Although graphics hardware evolved remarkably
in the past decade, the general sense is that, at least in the
foreseeable future, any hardware improvement will be readily
put to use toward one of these goals.

The immense computational power required to render a
single frame with desirable effects such as physically correct
shadows, depth-of-field, motion-blur, and global illumina-
tion (or even an effective ambient-occlusion approximation)
is multiplied by the demands of high-resolutions displays,
which require large scene descriptions to be manipulated (ge-
ometry, textures). The difficulty is compounded further by
the need to generate such frames continuously, as part of
real-time animation.
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Figure 1: Real-time rendering applications exhibit a considerable amount of spatio-temporal coherence. This is true for camera
motion, as in the Parthenon sequence (left), as well as animated scenes such as the Heroine (middle) and Ninja (right) sequences.
Diagrams to the right of each rendering show disoccluded points in red, in contrast to points that were visible in the previous
frame, which are shown in green (i.e., green points are available for reuse). [Images courtesy of Advanced Micro Devices, Inc.]

Although rendering at 30Hz (NTSC) is already considered
real-time, most modern LCD monitors and TVs can refresh
at least at 60Hz. Naturally, developers strive to meet this stan-
dard. Given that there is still a measurable task-performance
improvement in interactive applications as framerates in-
crease up to 120Hz [DER∗10b], there is justification to target
such high framerates. In this case, as little as 8 milliseconds
are available to produce each complete photo-realistic image,
and all involved calculations (including physical simulations
and other tasks unrelated to rendering itself) have to fit within
this time budget. Needless to say, this poses a difficult task.

The traditional approach to optimization in the context of
real-time rendering is to focus on improving the performance
of individual rendering tasks, one at a time. In this survey, we
present results that are connected by a more general approach
to optimization: exploiting temporal coherence (TC).
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Figure 2: Plot shows the percentage of surface points that
remain visible from one frame to the next for the animations
of Figure 1. Coherence in excess of 90% is typical of many
game-like scenes.

Consider the examples shown in Figure 1. When frame-
rates are high, there are only very small changes from one
frame to the next. Each visible surface point tends to remain
visible across the interval of several frames. Furthermore,
point attributes (including color) tend to maintain their values
almost unchanged throughout. To measure the amount of TC

in these animation sequences, Figure 2 plots the fraction of
points that remain visible from one frame to the next. We can
see that fractions of 90% and higher are typical.

Since an ever increasing slice of the rendering budget is
dedicated to shading surface points, such a high level of
TC presents a great opportunity for optimization. Rather
than wastefully recomputing every frame in its entirety from
scratch, we can reuse information computed during the course
of one frame (intermediate results, or even final colors) to
help render the following frames. The resulting reduction in
the average cost of rendering a frame can be used in a variety
of ways: from simply increasing the framerate to improving
the quality of each rendered frame.

Naturally, TC has been exploited since the early days of
computer graphics. We describe a variety of early applica-
tions in Section 2. In Section 3, we move to methods that
can be used to take advantage of TC in real-time rendering
scenarios. Special attention is given to techniques based on
reprojection. Reprojection allows us to map a surface point in
one frame to the same surface point in a previously rendered
frame. This mapping plays a key role in the reuse of infor-
mation across frames. Reusing information involves certain
quality/performance trade-offs that are analyzed in Section 4.
Since the selection of a proper target for reuse can modulate
this trade-off, the same section discusses the most impor-
tant factors influencing this choice. In Section 5, we then
categorize and discuss a number of applications that take
advantage of TC in real-time rendering, including both the
ones that use reprojection, and the ones that exploit TC in
other spaces. Finally, in Section 6, we provide a summary of
the presentation.

2 Early approaches
Temporal coherence has been around for almost as long

as computer graphics itself. For example, the term frame-
to-frame coherence was first introduced by Sutherland et
al. [SSS74] in his seminal paper “Characterization of Ten
Hidden-Surface Algorithms.” Therefore, we will summarize
early developments in which TC was already used in similar
ways.

In particular, we will cover the use of temporal coherence
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in ray tracing, in image-based rendering, and image and
render caches.

2.1 Ray-tracing
Temporal coherence was already used for the classical

ray-tracing algorithm in order to speed up the calculation
of animation sequences. While these techniques are for of-
fline rendering, most of them already make use of forward
reprojection (Section 3.2) for reusing information.

Badt [BJ88] developed a forward reprojection algorithm
that uses object space information stored from the previ-
ous frame. This allows approximating ray-traced animation
frames of diffuse polygons. Adelson and Hodges [AH95]
later extended the approach to ray-tracing of arbitrary scenes.
Havran et al. [HBS03] reused ray/object intersections in ray
casted walkthroughs. They do this by reprojecting and splat-
ting visible point samples from the last frame into the current,
thereby avoiding the costly ray traversal for more than 78%
of the pixels in their test scenes.

Leaving the concept of frame-based rendering behind,
Bishop et al. [BFMZ94] introduced frameless rendering,
which heavily relies upon TC for sensible output. Here each
pixel is rendered independently based on the most recent
input, thereby minimizing lag. There is no wait period until
all pixels of a frame are drawn, but individual pixels stay
visible for a random time-span, until they are replaced with
an updated pixel. Note that this approach does not use the
object coherence that is an integral part of many polygon
renderers. To avoid image tearing, pixels are rendered in a
random order. Dayal et al. [DWWL05] combined this with
temporal reprojection and adaptive reconstruction, focusing
on edges and dynamic parts of the scene.

2.2 Image-based rendering
In a general sense, temporal coherence is also related to

methods that replace parts of a scene with image-based proxy
representations. This can be interpreted as a form of reverse
reprojection (Section 3.1) applied to individual parts of a
scene. This idea was used most prominently in the so-called
hierarchical image cache and its variations [Sch96, SLS∗96],
where images (called impostors) of complex distant geometry
are generated on the fly and reused in subsequent frames,
thus reducing rendering times. The geometric error for such
systems has also been formally analyzed [ED07a]. Frame-
to-frame coherence is further exploited in various systems
that partition the scene into different layers [RP94, LS97],
while others augment the image-based representation with
depth information [SGHS98]. In this report however, we will
focus on methods that do not use proxy geometry to cache
information, but directly reuse rendered information from the
previous frame buffers.

2.3 Image and render caches
Image and render caches store the information generated

in previous frames in a data structure, and reuse this informa-
tion for the generation of the current frame, using different

reconstruction and mostly forward reprojection techniques
(Section 3.2).

Wimmer et al. [WGS99] proposed a technique that accel-
erates the rendering of complex environments by splitting
the scene into a near field and a far field: The near field is
rendered using the traditional rendering pipeline, while ray
casting is used for the far field. To minimize the number of
rays cast, they use a panoramic image cache and only re-
compute rays if a cache entry is not valid anymore, where
validity is based on the distance to the original observer po-
sition where the pixel was generated. The panoramic image
cache avoids reprojection altogether, but quickly becomes
inaccurate for translational motion.

Qu et al. [QWQK00] proposed using image warping to
accelerate ray-casting. The idea is to warp the output image
of the previous frame into the current frame using forward
projection. Due to the warping, pixels may fall between the
grid positions of the pixels of the current frame, therefore an
offset buffer is used to store the exact positions. Due to disoc-
clusions, holes can occur at some pixels. Here ray-casting is
used to generate these missing pixels. The authors proposed
to use an age stored with each pixel, which is increased with
each warping step to account for the lower quality of pixels
that have been warped (repeatedly). Upon rendering a new
output frame, this age can be used to decide if a pixel should
be re-rendered or reused.

Walter et al. [WDP99] introduced the render cache. It is
intended as an acceleration data structure for renderers that
are too slow for interactive use. In contrast to the previously
mentioned approaches, which store pixel colors, the render
cache is a point-based structure, which stores the complete 3d
coordinates of rendered points and shading information. By
using reverse reprojection, these results can be reused in the
current frame. Progressive refinement allows decoupling the
rendering and display frame rates, enabling high interactivity.
Walter et al. [WDG02] extended this approach with predictive
sampling and interpolation filters, while later work acceler-
ated the render cache on the GPU [VALBW06, ZWL05].

Ward and Simmons [WS99] described the Holodeck ray
cache, which converts rendered samples into a spherical 4D
mesh centered at the viewpoint. The mesh can then be dis-
played for different viewpoints. Based on this method, Sim-
mons and Séquin [SS00] proposed the Tapestry representation
by introducing incremental recentering of the spherical mesh,
as well as other enhancements such as prioritized sampling
and automatic sample invalidation.

3 Reprojection and data reuse
An important decision when utilizing TC is how the previ-

ously computed data is stored, tracked, retrieved and reused.
On modern graphics hardware, the most common way is to
store the desired data at visible surface points in viewport-
sized off-screen buffers at each rendered frame, usually re-
ferred to as history buffer, payload buffer or cache. When

c© 2014 The Author(s)
Journal compilation c© 2014 The Eurographics Association and Blackwell Publishing Ltd.



D. Scherzer & L. Yang & O. Mattausch & D. Nehab & P. Sander & M. Wimmer & E. Eisemann / Temporal Coherence Methods

generating the following frames, the data in the buffer are re-
projected to their new locations based on scene motion. Even
with hardware support, reprojection can still be a computa-
tionally challenging task. In this section, we first describe two
reprojection strategies that are commonly used in numerous
applications and can sometimes be interchanged to suit spe-
cial needs. In disoccluded regions where the previous data is
not available, we show how to fill in approximate results that
are visually plausible. Finally, we describe amortized sam-
pling, which is a basis used in various applications described
in Section 5.

3.1 Reverse reprojection
A basic scenario of using TC is to generate a new frame

using data from a previously shaded frame. For each pixel
in the new frame, we can trace back to its position in the
earlier cached frame to determine if it was previously visi-
ble. If available, this cached value can be reused in place of
performing an expensive computation. Otherwise it must be
recomputed from scratch. This technique is called the Reverse
Reprojection Cache (RRC). It was proposed independently
by Nehab et al. [NSL∗07] and Scherzer et al. [SJW07], and
serves as a framework for a number of applications described
in Section 5.

Formally, let ft denote the cache generated at time t, which
is a framebuffer holding the pixel data visible at that frame.
In addition to ft , we keep an accompanying buffer dt which
holds the scene depth in screen space. Let ft(p) and dt(p) de-
note the buffer values at pixel p∈Z2. For each pixel p=(x,y)
at time t, we determine the 3D clip-space position of its gener-
ating scene point at frame t-1, denoted by (x′,y′,z′) = πt-1(p).
Here the reprojection operator πt-1(p) maps a point p to its
previous position at frame t-1. Note that with this reprojection
operation, we also obtain the depth of the generating scene
point z′ at frame t-1. This depth is used to test whether the
current point was visible in the previous frame. If the repro-
jected depth z′ equals dt-1(x

′,y′) (within a given tolerance),
we conclude that the current pixel p and the reprojected pixel
ft-1(x

′,y′) are indeed generated by the same surface point.
In this case, the previous value can be reused. Otherwise no
correspondence exists and we denote this by πt-1(p) = ∅,
which we refer to as a cache miss. Additional tests such as
object-ID equality can also be employed to reinforce this
cache miss decision. The reverse reprojection operation is
illustrated in Figure 3.

3.1.1 Implementation
The RRC algorithm can be conveniently mapped to the

modern programmable rendering pipeline. A major task of
this is to compute the reprojection operator πt-1(p), which
maps each pixel p to its corresponding clip-space position
in the previous frame t − 1. At frame t, the homogeneous
projection space coordinates (xt ,yt ,zt ,wt)vert of each vertex
v are calculated in the vertex shader, to which the application
has provided the world, view and projection matrices and any
animation parameters. To perform correct reprojection, the

t-1 t

p
1

p
2

pppppppπt-1(p1
)
πt-1(p2

)

Figure 3: The reverse reprojection operator. The shading
result and pixel depths of time t-1 are stored in screen-space
framebuffers (left). For each pixel p at time t (right), its
reprojected position πt-1(p) is computed to locate the corre-
sponding position at frame t-1. The recomputed scene depth
is compared to the stored pixel depth. A pair of matching
depths indicate a cache hit (p2), whereas inconsistent depths
indicate a cache miss (p1).

application also has to provide these matrices and animation
parameters at t− 1 to the vertex shading stage. In addition
to transforming the vertex at frame t, the vertex shader also
transforms the vertex using the matrices and parameters from
frame t − 1, thereby computing the projection-space coor-
dinates (xt-1,yt-1,zt-1,wt-1)vert of the same vertex at frame
t− 1. These coordinates are stored as vertex attributes and
are automatically interpolated by the hardware before reach-
ing the pixel stage. This gives each pixel p access to the
previous projection-space coordinates (xt-1,yt-1,zt-1,wt-1)pix.
The final cache coordinate πt-1(p) is obtained with a simple
division by (wt-1)pix within the pixel shader. Note that the
transformation need only be computed at the vertex level,
thereby significantly reducing the computational overhead in
most scenes.

Because of arbitrary scene motion and animation, the pre-
vious position πt-1(p) usually lies somewhere between the
set of discrete samples in the cache ft-1 and thus some form
of resampling is required. Nehab et al. [NSL∗07] suggested
using hardware-assisted bilinear texture fetch for resampling.
In most situations this suffices for practical use. It is also used
to reconstruct the previous depth value, so that a more robust
cache-miss detection can be achieved.

3.2 Forward reprojection

Alternatively, instead of starting from every pixel in the
target frame, we can directly process the cache and map every
pixel in the cache to its new position. This has the advantage
that it does not require processing the scene geometry for the
new frame, which is desirable in some applications. Still, it re-
quires a forward motion vector (or disparity vector) generated
for each pixel, which is equivalent to the inverse mapping of
πt-1(p).

On the other hand, per-pixel forward projection can be
difficult and costly to implement on conventional graphics
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hardware (prior to DirectX 11) because it involves a scattering
operation, which does not map well to the traditional graphics
pipeline. For example, splatting each pixel from the previous
frame to its reprojected position in the current frame can be
slow and leave holes. It may also require applying complex
filtering strategies in order to obtain pixel-accurate results.
A way around these problems was described by Didyk et
al. [DER∗10b]: they proposed an image-warping technique,
which is efficient on conventional GPUs. The warping is
achieved by approximating the motion vector field with a
coarse grid representation, assuming that the vector field is
piecewise linear. An initial uniform grid is snapped to large
motion vector discontinuities in the previous frame. Then
the grid geometry is rendered to its new position dictated
by the motion vector field, so that its associated texture is
automatically warped. Occlusion and disocclusion are nat-
urally handled with grid folding and stretching. Note that
depth testing must be enabled in order to correctly resolve
occlusions and fold-overs.

A regular grid used by Didyk et al. [DER∗10b] can have
difficulties warping images with finely detailed geometry.
They later proposed an improved algorithm using adaptive
grids [DRE∗10]. Their new approach starts with a regular grid
(32×32). Then a geometry shader traverses all the quads in
the grid in parallel. Every quad that contains a discontinuity
is further partitioned in four. This process is iterated until
no quads need to be further partitioned. At that point, the
grid geometry is rendered as in the regular grid case. Due to
the adaptive grid, this new approach has better utilization of
computational resources, thereby significantly improving the
quality.

Yu et al. [YWY10] proposed a forward reprojection
method that leverages the parallel data scattering function-
ality on the GPU (available through CUDA or DirectX 11
Compute Shader). For each pixel in the cache, they determine
its new position in the target frame by offsetting its current
position using the forward motion vector (disparity vector).
Then the depth of the current pixel is tested against the tar-
get pixel for resolving visibility. This operation is performed
using the atomic min functionality to avoid parallel write con-
flicts. Note that since there is no one-to-one mapping between
the source and the target pixels, holes can be present after
reprojection. To resolve this, Yu et al. [YWY10] proposed
to increase the support size of the reprojected pixel, i.e., to
write to all four neighbors of each reprojected fractional posi-
tion. This works with near-view warping for their application
of light-field generation, but may be insufficient for other
applications where non-uniform motion is involved.

Recently, Yang et al. [YTS∗11] proposed an image-based
approach for forward reprojection using conventional GPU
pixel-shading functionality, i.e., pixel gathering as opposed
to scattering. The essence of the approach is an iterative
image-space search performed independently at each pixel
in the target frame, in order to find the motion vector that

leads to the corresponding pixels in the rendered frames.
This approach effectively inverts the reprojection operator
πt-1(p) based on the assumption that πt-1(p) is piecewise
smooth over the image. Discontinuity is handled by several
additional search initialization heuristics. The entire process
fits in a pixel shader, and produces convincing results within
a small time budget.

3.3 Handling disocclusion
The process of reprojection is essentially a non-linear warp-

ing and may leave the newly disoccluded regions incorrectly
shaded or blank. With reverse reprojection, we may have the
option to reshade these regions whenever a cache miss occurs.
However, this is not always desirable due to limited time
budget or other constraints imposed by the application. With
forward reprojection, there is usually no such option since
the shading input may not be available. Therefore, some form
of approximate hole filling needs to be performed in order to
reduce visual artifacts.

Andreev [And10] suggested an inpainting strategy that
duplicates and offsets neighboring image patches into the
hole area from the four sides. This is efficiently implemented
in a pixel shader and can be performed iteratively until the
hole is completely filled. For a more robust solution, one can
consider using pull-push interpolation [MKC07]. The pull-
push algorithm consists of a pull phase and a subsequent push
phase. The pull phase iteratively computes coarser levels of
the image containing holes, forming an image pyramid. Each
pixel in a coarser level is the average of the valid pixels in
the corresponding four pixels from the finer level. The push
phase then operates in the inverse order and interpolates the
hole pixels from the coarser levels. This works best for the
small holes caused by per-pixel forward reprojection. With
larger holes, the interpolated pixels may appear blurred and
can be a source of artifacts as well.

3.4 Cache refresh
A straightforward usage of data reprojection is to avoid

shading pixels that are visible in the previous frame. This can
apply to either part or the entire pixel shading computation.
For example, if we use RRC, the original pixel shader can be
modified to add a cache load and reuse branch, as shown in
Figure 4. When each pixel p is generated, the reprojection
shader fetches the value at πt-1(p) in the cache and tests if the
result is valid (i.e., a cache hit). If so, the shader can reuse this
value in the calculation of the final pixel color. Otherwise, the
shader executes the normal pixel shading. Whichever route
the shader follows, it always stores the cacheable value for
potential reuse during the following frame.

Although a cached value can be continuously reused
throughout many frames, it may quickly become stale be-
cause of either shading changes or resampling error. Nehab et
al. [NSL∗07] proposed to refresh (i.e., recompute) the value
periodically in order to counteract this effect. For a fixed
refresh rate, the screen can be divided into ∆n groups and
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Load/Reuse

Lookup Hit? Update

Recompute

yes

no

Figure 4: Schematic diagram of applying the reverse re-
projection cache to avoid pixel shading whenever possi-
ble [NSL∗07].

updated in a round-robin fashion in each frame by testing the
following condition for each pixel:

(t + i) mod ∆n = 0, (1)

where i is the group ID of the pixel and t is a global clock.
They suggest two simple ways of dividing the screen:

Tiled refresh regions. The screen is partitioned into a grid
of ∆n non-overlapping tiles, with pixels in a tile sharing
the same ID.

Randomly distributed refresh regions. The screen pixels
are equally partitioned into ∆n groups with each pixel
assigned a random group ID.

Interleaved refresh regions. The updated screen pixels are
uniformly distributed on a regular grid. For a static scene
and camera, interleaving n such images leads to an accurate
high-resolution image of the scene.

With the tiled refresh strategy, pixels within a tile are re-
freshed at the same time. This leads to excellent refresh coher-
ence, but may lead to visible discontinuity at tile boundaries.
The randomly distributed refresh strategy updates pixels in a
random pattern. It exchanges sharp discontinuities for high-
frequency noise, which is usually less objectionable. Note
that it is recommended to assign the same ID to each 2×2 or
larger quad of pixels, because modern GPUs perform lock-
step shading computation on such quads. The interleaved re-
fresh regions are easy to achieve by rendering low-resolution
frames and applying a distance-dependent offset on the geom-
etry. For temporal integration, such schemes are interesting,
as the combination of these samples leads to a high-resolution
shot.

In addition, care must be taken in order to maximize the
performance when implementing this scheme with RRC. The
fact that there are two distinct paths in Figure 4, cache hit
and cache miss, allows for several implementation alterna-
tives. The most straightforward approach is to branch be-
tween the two paths (Figure 5(a)). This allows all the tasks
to be performed in a single rendering pass, but may suffer
from dynamic branching inefficiency particularly when the
refreshed region is not coherent and the branches are unbal-
anced. To achieve better performance, Nehab et al. [NSL∗07]
defer the expensive recomputation and put it into a separate
pass, so that the branches are more balanced (Figure 5(b)).

Lookup Hit?
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payload
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cache payload

Update cache,
Output color

yes

no

Compute shading
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(a) one-pass implementation
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Compute shading
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(b) two-pass implementation
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payload

Discard pixel

Output cache
payloadyes

no

Recompute
cache payload

Output color

first pass third pass

Compute shading
using payload

Output cache
payload

second pass

(c) three-pass implementation

Figure 5: Three control flow strategies for accelerating pixel
shading using the RRC.

By relying on early-Z culling, the miss shader is only exe-
cuted on the cache-miss pixels that are automatically grouped
to avoid any performance penalty. If the hit shader (green
block in Figure 5) is also non-trivial to compute, the branches
in the first pass may still not be balanced. Sitthi-amorn et
al. [SaLY∗08a] proposed a method that further separates this
part of the computation into a third pass (Figure 5(c)) in order
to reduce dynamic branching cost. This three-pass implemen-
tation also has the advantage that it does not require muliple
render-target support, but incurs more geometry processing
cost. The choice of strategy therefore depends on the relative
cost between vertex and pixel shading in the target scene.
Sitthi-amorn et al. [SaLY∗08a] presented some empirical per-
formance analysis of these three implementations in practice.

3.5 Amortized sampling
Another common strategy of data reuse is to combine

previous shading results with those from the current frame.
Gradual phase-out can then be used to avoid explicitly re-
freshing pixels. This strategy is usually applied to amortize
the expensive task of computing a Monte-Carlo integral, in
which multiple spatial samples are combined for each pixel.
With data from the past, each frame then only needs to com-
pute a lot less samples (typically only one) for each pixel in
order to achieve a similar image quality. This is beneficial for
many high-quality rendering effects described later, such as
spatial anti-aliasing, soft shadows and global illumination.

In order to efficiently reuse and combine previously com-
puted samples of a signal without increasing storage overhead,
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Figure 6: Trade-off between the amount of variance reduc-
tion (the variance-ratio curve), and the maximum frames of
lag that may exist in the current estimate (the total fall-off
curve) [NSL∗07]. This trade-off is controlled by the parame-
ter α.

Nehab et al. [NSL∗07] and Scherzer et al. [SJW07] proposed
to combine and store all previously computed samples asso-
ciated with a surface point using a single running average.
In each frame, only one sample st(p) is computed for each
pixel p and is combined with this running average using a
recursive exponential smoothing filter:

ft(p)← (α)st(p)+(1−α) ft-1
(
πt-1(p)

)
. (2)

Here the running estimate of frame t is represented by ft and
is stored in the RRC, and st denotes the shading contribution
from the current frame. If we expand this recursive formula-
tion, we can see that the running estimate is equivalent to the
weighted sum of all the previous samples at the same surface
point. The weight of a single sample decreases exponentially
over time, and the smoothing factor α regulates the tradeoff
between the degree of variance reduction and responsive-
ness to changes in the sampled signal. For example, a small
value of α leads to a relatively slow decrease of the sample
weights, which effectively accumulates more samples in the
past and therefore produces a smoother result at the expense
of additional lag in the shaded signal.

The precise degree of variance reduction is given by

lim
t→∞

Var( ft(p))
Var(st(p))

=
α

2−α
. (3)

For example, choosing a value of α = 2/5 reduces the vari-
ance to 1/4 the original. This is roughly equivalent to in-
creasing the sampling rate by a factor of four. On the other
hand, the actual number of frames contributing to ft with non-
trivial weights (i.e., larger than 8-bit precision 1/256) is 10,
which indicates that the contribution of any obsolete sample
will be smoothed out after 10 frames. This tradeoff between
smoothness and lag is illustrated in Figure 6. In practice, α

must be carefully set to obtain the best tradeoff.

4 Data-reuse quality and performance

The ideal scenario for taking advantage of coherence is
when the value of interest obtained from a previous frame is
exactly the same as the desired one. In reality, when consider-
ing a target for reuse, we often find that its value depends on
inputs that are beyond our control. These may include chang-
ing viewing parameters, lighting conditions, time itself, and
most importantly, user interactions. Good targets for reuse
are those that change little under the range of expected input
variation. Nevertheless, even slowly varying attributes must
be eventually updated, and we must also identify appropriate
refresh periods.

Another important consideration is the cost of recomputing
each reused value. This is because the overhead associated
with obtaining previously computed values is not negligible
(see Section 3.1.1). If recomputing a value is cheap, reusing
it may not bring any performance advantage.

In summary, developers must identify computationally ex-
pensive intermediate computations that vary little under the
range of expected input changes, and determine the appro-
priate number of frames between updates. Given the large
number of different effects and input parameters involved in a
modern real-time rendering application, this task can quickly
become overwhelming. Recent efforts have therefore focused
on automating parts of this process.

4.1 Semi-automatic target identification
The system proposed by Sitthi-amorn et al. [SaLY∗08b]

starts by analyzing the source-code of shaders and identify-
ing possible intermediate computations for reuse. During a
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Figure 7: Trade-off between error and performance asso-
ciated to caching different intermediate results in a marble
shader. Each line shows the effect of varying the refresh pe-
riod ∆n between 2 and 50 frames on each choice of cached
intermediate computation. Interesting error thresholds εi are
marked, the results of which are shown in Figure 8. Original
shader runs at 29FPS, as indicated by the dashed line.
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Figure 8: Results of selecting different error thresholds in Figure 7. The intermediate value selected for caching (payload) is
shown next to the final rendered results (final shading). Higher error thresholds allow for substantial parts of the computation to
be cached, leading to better performance at the expense of quality.

training session, the system automatically renders animation
sequences while gathering error and performance data on
shaders that have been automatically modified to cache and
reuse each candidate. The rendering sessions are designed to
encompass the range of typical input variation, and are run
under a variety of different refresh periods.

Assuming the input variation is stationary, the authors
found empirical models for both the amount of error and the
rendering cost associated to reusing each possible intermedi-
ate value. These models were later shown to closely match
measured data.

The expected error caused by reusing the value fm of a
given intermediate computation m over a period of ∆n frames
can be modelled by a parametric equation:

ε̂( fm,∆n) = αm

(
1− e−λm(∆n−1)

)
. (4)

Parameters αm and λm can be obtained by fitting the model
to data gathered in the training session.

Modelling the cost of rendering each pixel requires more
work. First, the system solves for an estimate of the average
time taken to render a pixel under both cache-hit and cache-
miss conditions. Denote these by ∆hit( fm) and ∆miss( fm),
respectively. These values are obtained by solving an over-
constrained linear system for ∆hit( fm) and ∆miss( fm):

Hi ∆hit( fm)+Mi ∆miss( fm)+ c = ∆t i. (5)

Each equation comes from measurements of different frames i
in the training sequence. Here, c is a constant rendering over-
head, Hi is the number of hits, Mi the number of misses,
and ∆t i the time to render frame i.

The average cost of rendering a single pixel can then be
modelled as

r̂( fm,∆n) = λ(∆n)∆hit( fm)+
(
1−λ(∆n)

)
∆miss( fm), (6)

where λ(∆n) = µ(1− 1/∆n) is an empirical model for the

cache hit-rate as a function of ∆n, and µ is obtained by fitting
this model to the training data.

Using these models, the system allows the developer to
specify a target average pixel error. It then automatically se-
lects the shader component that provides the greatest improve-
ment in performance without exceeding the error threshold.

Figure 7 shows the error/performance behavior associated
with caching several different intermediate computations per-
formed by a marble shader. This shader combines a marble-
like albedo modeled as five octaves of a 3D Perlin noise
function, with a simple Blinn-Phong specular layer. Figure 8
shows the results of rendering under each choice of error
tolerance, in terms of both quality and performance. As the
user selects larger error thresholds, the system reacts by se-
lecting larger portions of the computation for caching (see
the payload), eventually including even the view-dependent
lighting, at which point undesirable artifacts appear. Never-
theless, substantial performance improvements are possible
below an acceptable error threshold (see e3 running at a 2.8x
improvement).

4.2 Reprojection errors and their accumulation
The strategies we use to obtain the values of previous com-

putations (see Section 3) can themselves inject unwanted
errors. Although such errors are indirectly modelled by the
automatic method described above, here we present a sim-
plified analysis of this specific issue (see [YNS∗09] for an
alternative, more detailed presentation).

Due to camera and object motions, the corresponding po-
sitions of any given surface point in two consecutive frames
generally involve non-integer coordinates in at least one of
them. Reprojection strategies must therefore resample any
data that is moved between frames. Bilinear filtering is, by
far, the most commonly used resampling strategy in real-time
reprojection applications. Mappings between consecutive
real-time frames tend to exclude large minifications, mak-
ing trilinear filtering unnecessary. It is therefore important to
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Figure 9: Amplitude response and phase error associated to
translation by linear resampling. Note that largest amplitude
attenuation and phase error happens for high frequencies.

understand the impact of bilinear filtering on the quality of
reprojected data.

Although analyzing the effect of general motion across
multiple frames is impractical, the special case of constant
panning motion is easy to describe mathematically, particu-
larly in one dimension (other types of motion can be approxi-
mated by translation, at least locally).

Assume we have information stored in a frame ft that we
want to resample to time t +1. Constant panning motion with
velocity v can be described by πt+1(p) = p− v, for every
point p and time t. Without loss of generality, assume the
velocity is in [−0.5,0.5]. The entire resampling operation can
be rephrased in terms of the discrete convolution

ft→t+1 = ft ∗
[
v (1-v)

]
(7)

= ft ∗ kv, (8)

where we used the notation ft→t+1 to represent the new frame
containing only reprojected data. Under our assumptions, the
behavior of reprojection is therefore controlled by the effect
of the convolution kernel kv = [v (1-v)].

For each different velocity v, and for each frequency ω, we
compute the amplitude attenuation and the phase error intro-
duced by kv. Resulting plots are shown in Figure 9, where
shaded regions represent values between the extremes. As we
can see from the plots, reprojection through bilinear resam-
pling tends to attenuate and misplace high-frequencies. Not
visible from the plot is the fact that the problem is particularly
extreme when v =±0.5 and that it disappears when v = 0
(as expected from the interpolation property).

The effect of repeated resampling can also be analyzed:

ft→t+n = ft→t+n-1 ∗ kv (9)

= ft ∗

n in total︷ ︸︸ ︷
(kv ∗ · · · ∗ kv) . (10)

The trick is to interpret kv as the probability mass function

of a Bernoulli distribution with success probability v. The
distribution has a variance of σ

2 = v(1− v). Repeatedly con-
volving kv with itself amounts to computing the sum dis-
tribution. By the Central Limit Theorem, this quickly con-
verges to a Gaussian. By the sum property of variance, we
have σ

2
n = nv(1− v). The progressively low-pass nature of

repeated resampling then becomes obvious in the formula for
the variance.

There are several alternatives to prevent the excessive blur
introduced by repeated resampling from causing objection-
able rendering artefacts. For example, we can periodically
recompute values instead of relying on reprojection. This is in
fact the approach followed by Sitthi-amorn et al. [SaLY∗08b]
(Section 3.4). Another alternative is to replace bilinear resam-
pling with an alternative strategy that has better frequency
properties, such as the one proposed by Yang et al. [YNS∗09]
(Section 5.3). Finally, in the context of computation amor-
tization described in Section 3.5, we can also progressively
attenuate the contribution of older frames, thereby limiting
the maximum amount of visible blur.

5 Applications
There are numerous applications in real-time rendering

where TC can be exploited to improve performance and qual-
ity. In this section, we aim to summarize the available tech-
niques that follow this direction. Table 1 lists all the relevant
approaches that we describe, categorized by the application
and the type of techniques applied. Many of these appli-
cations are based on image-based reprojection and related
approaches (Section 3). Performance and quality studies (Sec-
tion 4), which were originally discussed in the context of pixel
shading acceleration and antialiasing, can also be helpful in
optimizing RRC-based techniques. In addition, there are sev-
eral methods that employ an object space or a post-processing
type of data reuse, which are also relevant to the topic and
discussed in this survey.

5.1 Pixel shader acceleration
One of the direct uses of the reverse reprojection cache is

to accelerate expensive pixel-shading computations [NSL∗07,
SaLY∗08a, SaLY∗08b]. The basic idea is to bypass part or
all of the computation of the original pixel shader whenever
there are previous shading results available in the cache, as
described in Section 3.4. Figure 4 shows the flow chart of this
type of shading acceleration.

In addition to the marble shader described in Section 4.1,
we show two more results of accelerating expensive pixel
shaders using the RRC [SaLY∗08b]. The first shader is a
Trashcan environmental reflection shader from ATI’s Toyshop
demo, which combines a simple base geometry with a high-
resolution normal map and environment map to reproduce the
appearance of a shiny trashcan. The shader combines 25 strat-
ified samples of an environment map using a Gaussian kernel
to attenuate aliasing artifacts. In this example, we found that
caching the sum of 24 samples of the possible 25 gives the
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Application
Reverse

reprojection
(3.1)

Forward
reprojection

(3.2)

Handling
disocclusion

(3.3)

Cache
refresh

(3.4)

Amortized
sampling

(3.5)

TC target
identification

(4.1)

Reprojection
error
(4.2)

Object-
space

Post-
processing

Pixel shader
acceleration
(5.1)

[NSL∗07] [SaLY∗08b] [SaLY∗08b]

Multi-pass
effects (5.2)

[NSL∗07]

[AH93]
[CW93]

[YWY10]
[DRE∗10]

[NSL∗07] [HDMS03]

Shading
antialiasing
(5.3)

[YNS∗09] [YNS∗09] [YNS∗09] [YNS∗09]

Shadows (5.4) [SJW07]
[SJW07]

[SSMW09]
Global
Illumination
(5.5)

[KTM∗10]
[MSW10]

[MSW10]
[LSK∗07]
[REH∗11]

Spatio-
temporal
upsampling
(5.6)

[HEMS10]

Frame
interpolation
(5.7)

[YTS∗11]
[And10]

[DER∗10b]
[YTS∗11]

[And10]

Non-
photorealistic
rendering
(5.8)

[LSF10] [BFP∗11]

Level-of-
detail (5.9)

[SW08] [HREB11]

Streaming
(5.10)

[PHE∗11] [FE09] [FB08]

Online
visibility
culling (5.11)

[GKM93]
[ZMHI97]
[BWPP04]
[MBW08]

Temporal per-
ception (5.12)

[DER∗10a]
[TDR∗11]

Table 1: Existing approaches that exploit TC in real-time rendering, indexed by applications (rows) and the types of techniques
applied (columns), with section numbers of this survey if applicable.

most effective speed up without introducing too many visi-
ble artifacts (see Figure 10 (left) for a comparison). In other
words, the modified shader evaluates 24 samples every fourth

10%

5%

0%

Figure 10: Additional examples of shading acceleration us-
ing RRC. Each image compares (top) an input pixel shader
to (bottom) a version modified to cache some partial shading
computations over consecutive frames. The shading error
after applying the cache is illustrated in the inset images.

frame (on average) and evaluates the single sample with the
greatest reconstruction weight at every frame. Indeed, this
shader is not particularly suited for using TC to accelerate,
because all of the calculations depend strongly on the camera
position and cached values quickly become stale. Neverthe-
less, RRC provides a 2.1× performance improvement at an
acceptable level of error.

The second shader computes approximate object-space am-
bient occlusion at each pixel for a chessboard scene with the
king piece moving and the remaining pieces static. The basic
idea is to approximate the scene geometry as a collection of
discs organized in a hierarchical data structure and stored
as a texture. As each pixel is shaded, this data structure is
traversed to compute the percentage of the hemisphere that is
occluded. This calculation is combined with a diffuse texture
and a Blinn-Phong specular layer to produce the final color.
In this particular scene, the ambient-occlusion calculation is
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carried out by summing the contribution of the king chess
piece separately from the other pieces. We found that caching
the portion of the ambient-occlusion calculation that accounts
for only the static pieces gives the best result. In other words,
the contribution of the moving king and the remaining shad-
ing are recomputed at every frame. This provides an 8×
speed-up for a marginal amount error and is demonstrated in
Figure 10 (right). Caching more computations, such as the
entire ambient-occlusion calculation, will lead to visible error
in the result, although the speed-up factor will also be larger
(15× or more).

5.2 Multi-pass effects
Effects such as motion blur and depth-of-field are most

easily understood and implemented as the accumulation of a
series of frames, respectively rendered under slight variations
in animation time or camera position, relative to a central
frame [HA90]. Although rendering and accumulating mul-
tiple frames in order to produce a single output frame may
seem prohibitively expensive, the small magnitude of vari-
ation in input parameters between each accumulated frame
leads to large amounts of coherence between them. This
coherence has been successfully exploited in the context
of image-based rendering [CW93], ray-traced animation se-
quences [HDMS03], and more recently in real-time render-
ing [NSL∗07, YWY10]. Imperfections tend to be hidden by
the low-pass nature of these effects, leading to images that
are virtually indistinguishable from the brute-force results.
The savings in rendering cost can be used to either increase
quality by raising the number of accumulated frames, or to
increase the frame rate for a fixed quality setting.

The real-time approach proposed in [NSL∗07] starts by
completely rendering a central frame into a buffer. Then,
when rendering the accumulated frames, shading information
is obtained from the central frame by reverse reprojection.
The extent to which performance is improved depends on the
relative cost between rendering the central frame (geometry
+ shading) and rendering each accumulated frame (geom-
etry + cache-lookup). This is because reverse reprojection
requires rasterizing the geometry of each accumulated frame
(see Section 3.1). Improvements are therefore limited when
geometry is complex and shading is relatively simple. Yu
et al. [YWY10] proposed to use forward reprojection (Sec-
tion 3.2) in order to decouple this overhead from geometry
complexity. They also apply a blurring pass to the reprojected
frames before accumulation, so that the undersampling and
disocclusion artifacts are attenuated.

Another rendering scenario that is closely related to depth-
of-field is stereographic rendering. Two views are rendered
from the same scene, one from the viewpoint of each eye
of a virtual observer. Then, one of many different methods
is used to expose each of the user’s eyes to the correspond-
ing image (e.g., shutter glasses, polarization filters), leading
to the perception of depth. Stereographic rendering has re-
cently gained increased attention given the success of 3D

cinematographic productions as well as the increased avail-
ability of 3D-capable consumer hardware (TV sets, portable
video-game consoles etc).

One way to avoid the doubling of cost-per-frame that
would result from the brute-force approach to stereographic
rendering is to instead render only one frame from the stereo
pair and then warp it to produce the other frame. This is a
well established idea that was successfully used in the context
of stereographic ray-tracing [AH93] (where rendering cost
was extremely high) and in stereographic head-tracked dis-
plays [MB95] (where warping was used to efficiently update
a previously rendered stereo pair to compensate for user head
movements).

Since per-pixel depth information is a natural by-product
of real-time rendering, generating the mapping between two
stereo views is particularly easy. The challenges are in the
design of an efficient warping procedure that adapts to sharp
features and attenuates any artefact resulting from surface
points that are only visible from one of the viewpoints.

One way to perform this operation is to rely on an adaptive
warping grid [DRE∗10] (see Section 3.2) to transform one
view into another. Didyk et al. further proposed to exploit
temporal coherence by analyzing the camera movement from
one frame to the next. Depending on the camera movement
and the previously computed frame, it can be more advanta-
geous to render and then warp either the left or the right eye
view. For example, imagine a panning motion from left to
right. Here, a right-eye view in frame i might be very close to
a left-eye view in frame i+1. Consequently, it makes sense to
render the right eye view in frame i+1. The rendered frame
and the previous are then warped to produce a left-eye view
for frame i+ 1. In particular, for a static camera and scene,
the result is indistinguishable from a two-view rendering.

5.3 Shading antialiasing

One of the direct applications of amortized sampling (Sec-
tion 3.5) is to supersample procedural shading effects, which
usually contain high-frequency components that are prone
to aliasing artifacts. By accumulating jittered samples gener-
ated in previous frames using amortized sampling, the extra
frequency bands can be effectively suppressed. However,
supersampling usually requires a small exponential smooth-
ing factor α in order to gather sufficient samples. This has
the undesired side effect that the running estimate can be
overblurred because of excessive repeated resampling of the
cache (Section 4.2).

Yang et al. [YNS∗09] proposed to keep a higher-resolution
(2×2) running average in order to counteract this overblur-
ring artifact. To reduce the overhead of maintaining such a
high-resolution buffer, they store the 2×2 quadrant samples
of each pixel into four subpixel buffers {bk}, k ∈ {0,1,2,3}
using the interleaved sampling scheme. Each subpixel buffer
is screen sized and manages one quadrant of a pixel. These
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Figure 11: Sampling from multiple subpixel buffers. To prop-
erly reconstruct the quadrant value, Yang et al. [YNS∗09]
use nonuniform blending weights defined by a tent function
centered on the quadrant being updated. (a) In the absence
of local motion, only the correct pixel has non-zero weight in
the tent, so no resampling blur is introduced; (b) For a mov-
ing scene, the samples are weighted using the tent function,
and higher weights are given to samples closer to the desired
quadrant center to limit the amount of blur.

subpixel buffers are updated in a round-robin fashion, i.e.,
only one per frame.

Reconstructing a subpixel value from the four subpixel
buffers involves more work. Note that in the absence of scene
motion, these four subpixel buffers effectively form a higher-
resolution framebuffer. However, under scene motion, the
subpixel samples computed in earlier frames reproject to off-
set locations. Conceptually, Yang et al. [YNS∗09] forward
reproject all the previous samples into the current frame and
compute a weighted sum of these samples using a tent ker-
nel, as indicated in Figure 11. This effectively reduces the
contribution of distant samples and limits the amount of blur
introduced. It also correctly handles both static and moving
scenes simultaneously.

In addition to the higher resolution buffer, empirical meth-
ods are used to estimate reconstruction errors as well as the
amount of signal change in real time, and limit α accordingly
such that a minimum amount of refresh is guaranteed. The
reconstruction error is estimated by deriving an empirical
relationship between the fractional pixel velocity v, α, and
the error. Signal change, on the other hand, is estimated by a
smoothed residual between the aliased sample and the history
value. The user sets thresholds for both errors, and the bounds
for α are computed based on the error values.

Figure 12 shows the result of applying amortized sampling
to antialiasing a horse-checkboard scene, which includes an
animated wooden horse galloping over a marble checkered
floor. The result using 2×2 subpixel buffers shows significant
improvement over regular amortized sampling (1× viewport-
sized cache), with only a minor sacrifice of speed. In fact,
the PSNR shows that this technique offers better quality than

HORSE SCENE Amort1× mov (88fps, 23dB) Amort4× mov (64fps, 31dB)

No AA (140fps, 16dB) Reference Amort4× still (64fps, 40dB)

Figure 12: Comparison between no antialiasing, amortized
supersampling with viewport-size cache (Amort1×), amor-
tized supersampling with improved 2× 2 subpixel buffers
(Amort4×), and the ground-truth reference result for a horse-
checkerboard scene [YNS∗09]. The 4× “still” image (with-
out animation) approaches the quality of the reference result,
whereas the animated result provides an acceptable approxi-
mation without overblurring.

conventional 4×4 stratified supersampling, which runs at a
six times lower frame rate.

5.4 Shadows
Shadows are widely acknowledged to be one of the

global lighting effects with the most impact on scene per-
ception. They are perceived as a natural part of a scene
and give important cues about the spatial relationship of
objects. The field of shadow algorithms is vast and many
different methods exist. Several surveys [HLHS03, SWP11],
courses [EASW09, EASW10], and books [ESAW11] illus-
trate numerous approaches to address this important problem.

Due to its speed and versatility, shadow mapping is one of
the most used real-time shadowing approaches. The idea is to
first create a depth image of the scene from the point of view
of the light source (shadow map). This image encodes the
front between lit and unlit parts of the scene. On rendering
the scene from the point of view of the camera, each frag-
ment is transformed into this space. Here the depth of each
transformed camera fragment is compared to the respective
depth in the shadow map. If the depth of the camera fragment
is nearer, it is considered lit, otherwise it is in shadow (see
Figure 13).

5.4.1 Pixel-correct shadows
The most concerning visual artifacts of shadow mapping

originate from aliasing due to undersampling. The cause for
undersampling is in turn closely related to the rasterization
that is used to create the shadow map itself. Rasterization
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Figure 13: If the rasterization of the shadow map changes
(here represented by a right shift), the shadowing results may
also change. On the left three fragments are in shadow, while
on the right five fragments are in shadow. This results in
flickering or swimming artifacts in animations.

samples primitives on a regular grid. Each fragment is cen-
tered on one of these samples, but is only correct exactly at
its center. If the viewpoint changes from one frame to the
next, the regular grid sampling of the new frame is likely to
be completely different than the previous one. This frequently
results in artifacts, especially noticeable for thin geometry
and the undersampled portions of the scene called temporal
aliasing.

This is especially true for shadow maps. Due to shadow-
map focusing, a change in the viewpoint from one frame
to the next also changes the regular grid sampling of the
shadow map. Additionally the rasterized information is not
accessed in the original light space where it was created, but
in eye space, which worsens these artifacts. This frequently
results in temporal aliasing artifacts, mainly flickering (See
Figure 13).

The main idea in [SJW07] is to jitter the viewport of the
shadow map differently in each frame and to combine the
results over several frames, leading to a higher effective reso-
lution. Figure 14 shows the gradual refinement after accumu-
lating results from multiple frames.

Exponential smoothing as described in Section 3.5 is em-
ployed here on the shadow map tests st [p]. This serves a dual
purpose. On the one hand, temporal aliasing can be reduced
by using a small smoothing factor α. On the other hand, the
shadow quality can actually be made to converge to a pixel-
perfect result by optimizing the choice of the smoothing
factor.

The smoothing factor α allows balancing fast adaption
on changing input parameters against temporal noise. With
a larger smoothing factor, the result depends more on the
new shadow results from the current frame and less on older
frames and vice versa. To this end, the smoothing factor
is determined per-pixel according to the confidence of the
shadow lookup. This confidence is defined to be higher if
the lookup falls near the center of a shadow map texel, since

Figure 14: Shadow adaption over time of an undersam-
pled uniform shadow map after 0 (top-left), 1 (top-middle),
10 (top-right), 20 (bottom-left), 30 (bottom-middle) and 60
(bottom-right) frames.

only near the center of shadow map texels it is very likely
that the sample actually represents the scene geometry (see
Figure 15). In the paper, the maximum norm of the current
pixel p and the shadow map texel center c is used to account
for this

conf = (1−max(|px− cx| , |py− cy|) ·2)m , (11)

but other norms could be used as well. The parameter m
defines how strict this confidence is applied. m < 4 results in
fast updates where most shadow-map lookups of the current
frame have a big weight and the resulting shadow has noisy
edges. m > 12 results in accurate but slow updates where
most lookups from the current frame have small weight.

The authors found out that m should be balanced with cam-
era movement. When the camera moves fast, m can be small
because noise at the shadow borders is not noticed. Only for
a slowly moving camera or a still image are higher values of
m necessary. This is motivated by the human visual system,
which tends to integrate over motion, thereby allowing for
noisier edges when strong movement is present. This confi-
dence can now be directly used in the exponential smoothing
formula (see Section 3.5)

ft [p]← (conf)st [p]+ (1− conf) ft-1
(
πt-1(p)

)
. (12)

Figure 15: Light-space perspective shadow mapping
[WSP04] (left) gives good results for a shadow map resolu-
tion of 10242 and a view port of 1680×1050, but temporal
reprojection (middle) can still give superior results because
it uses shadow test confidence, defined by the maximum norm
of shadow map texel center and current pixel (right).
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5.4.2 Soft shadows

In reality, most light sources are area light sources and
hence most shadows exhibit soft borders. Light-source sam-
pling [HH97] creates a shadow map for every sample (each
on a different position on the light source) and calculates the
average (= soft shadow) of the shadow-map test results si for
each pixel (see Figure 16). Therefore, the soft shadow result
from n shadow maps for a given pixel p can be calculated by

ψn(p) =
1
n

n

∑
i=1

si(p). (13)

Figure 16: Light sampling with 1, 2, 3 and 256 shadow maps
(left to right).

The primary problem here is that the number of samples
(and therefore shadow maps) to produce smooth penumbrae
is huge. Therefore this approach is inefficient in practice. Typ-
ical methods for real-time applications approximate an area
light by a point light located at its center and use heuristics
to estimate penumbrae, which leads to soft shadows that are
not physically correct (see Figure 17, left). Overlapping oc-
cluders can lead to unnatural-looking shadow edges, or large
penumbrae can cause single-sample soft-shadow approaches
to either break down or become very slow.

Figure 17: Left side: PCSS 16/16; Overlapping occlud-
ers (upper row) and bands in big penumbras (lower row)
are known problematic cases for single-sample approaches.
Right side: soft shadows exploiting TC

One observation is that the shadow sampling can be ex-
tended over time. It is for example possible to change the
sampling pattern on the source in each frame, thereby trad-
ing aliasing artifacts with less objectionable random noise.
This is particularly easy to achieve for symmetric light
sources [ED07b, SEA08]. More generally, light source area
sampling can be formulated in an iterative manner by evalu-
ating only a single shadow map per frame [SSMW09]. Refor-
mulating Equation 13 gives

ψ(p) = s(p)+Σ(p)
n(p)+1

Σ(p) =
n(p)

∑
i=1

si(p), (14)

were s(p) is the hard shadow-map result for the current frame
and pixel and n(p) is the number of shadow maps evaluated
until the previous frame for this pixel. Note that now n de-
pends on the current pixel because depending on how long
this pixel has been visible, a different number of shadow
maps may have been evaluated for this pixel. The calculation
of this formula is straightforward if n(p) and Σ(p) are stored
in a buffer (another instance of the RRC: see Section 3.1).
With this approach, the soft shadow improves from frame to
frame and converges to the true soft shadow result if pixels
stay visible “long enough” (see Figure 18, upper row).

Figure 18: Convergence after 1,3,7,20 and 256 frames; upper
row: sampling of the light source one sample per frame; lower
row: soft shadows with TC.

In practice this can result in temporal aliasing for small
n. Care has to be taken in order to properly manage those
cases. When a pixel becomes newly visible and therefore no
previous information is available in the RRC, a fast single-
sample approach (PCSS with a fixed 4x4 kernel) is employed
to generate an initial soft shadow estimation for this pixel.
For all other n, the expected standard error is calculated and if
it is above a certain threshold (expected fluctuation in the soft
shadow result in consecutive frames), a depth-aware spatial
filter is employed to take information from the neighbor-
hood in the RRC into account (see Figure 19). This approach
largely avoids temporal aliasing and can be nearly as fast as
hard shadow mapping if all pixels have been visible for some
time and the expected standard error is small enough (see
Figures 18 and 17).

5.5 Global Illumination
It is a major goal of real-time research to achieve plausible

(and in the long run, physically correct) global illumination.
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Figure 19: Structure of the soft shadows with TC algorithm.

In this section, we present several techniques that explore
TC in an attempt to approximate global illumination effects
in real-time. Many techniques can be found in the excellent
survey by Damez et al. [DDM03]. Nonetheless, the focus is
often on off-line solutions or it is assumed that knowledge of
subsequent keyframes is available. For interactive rendering,
this is not always achievable and specialized solutions are
needed. In this context, it is difficult to exploit TC on current
GPUs, which is in the focus of our overview.

The radiance emitted from point p into direction ω can be
described by the rendering equation [Kaj86, ATS94]

L(p,ω) = Le(p,ω)+
1
π

∫
Ω

fr(p,ω′,ω)Li(p,ω′)(np ·ω′)dω
′.

(15)
Ω denotes the space of all hemispherical directions, Le is the
self emission, fr is the bidirectional reflectance distribution
function (BRDF), Li is the incident light from direction ω

′,
and np is the surface normal.

Global illumination algorithms often use Monte-Carlo sam-
pling to evaluate this multi-dimensional integral in a feasible
way. We can exploit TC between consecute frames, e.g., by
spreading the evaluation of the integral over time.

5.5.1 Screen-space ambient occlusion

Ambient occlusion [CT81] is a cheap but effective approx-
imation of global illumination which shades a pixel with
the percentage of the hemisphere that is blocked. It can be
seen as the diffuse illumination of the sky [Lan02]. Ambient

Figure 20: SSAO without TC using 32 samples per pixel with
(a) a weak blur, (b) a strong blur (both 23 FPS), (c) temporal
SSAO using 8–32 samples (initially 32, 8 in a converged state)
(45 FPS). (d) Reference solution using 480 samples (2.5 FPS).
The scene has 7M vertices and runs at 62 FPS without SSAO.

occlusion of a surface point p is computed as

AO(p,np) =
1
π

∫
Ω

V (p,ω′)
(
np ·ω′

)
dω
′. (16)

The (inverse) visibility function V was originally defined as
a binary function where V (p,ω′) = 1 if the visibility in this
direction is blocked by an obstacle, 0 otherwise. However,
other choices for V (e.g., an exponential falloff based on
distance) give visually more pleasing (i.e., smoother) results.

Screen-space ambient occlusion (SSAO) methods [Mit07]
sample the frame buffer as a discretization of the scene geom-
etry. These methods are of particular interest for real-time ap-
plications due to the fact that the shading overhead is mostly
independent of scene complexity, and several variants of
SSAO have been proposed since [FC08, BSD08, SKUT∗10].
We assume that any SSAO method can be written as an aver-
age over contributions C depending on a series of samples si:

SSAOn(p) =
1
n

n

∑
i=1

C(p,si), (17)
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Figure 21: The distance of p to sample point s2 in the current
frame differs significantly from the distance of pt−1 to s2t−1

in the previous frame, hence it can be savely assumed that a
local change of geometry occurred, which affects the shading
of p.

where a typical contribution function for a single SSAO sam-
ple can be

C(p,si) =V (p,si)max(cos(si−p,np),0). (18)

si is an actual sample point around p, and V (p,si) is now a
binary visibility function that is resolved by evaluating the
depth test for si.

Reverse reprojection allows us to cache and reuse previ-
ously computed SSAO samples. The properties of SSAO (rel-
atively low-frequency, independence from light-source, local
support of the sampling kernel) are beneficial for using TC,
as it was already demonstrated in commercial games [SW09].
In the following we discuss the temporal SSAO (TSSAO)
method of Mattausch et al. [MSW10], who focus on improv-
ing the accuracy and visual quality of SSAO for a given
number of samples per frame, and introduce an invalidation
scheme that handles moving objects well.

A comparison of conventional SSAO with TSSAO is
shown in Figure 20. The noisy appearance of a coarse SSAO
solution that uses only a few samples (image a) can be im-
proved with a screen-space spatial discontinuity filter. How-
ever, the result of this operation can be quite blurry (image
b). As long as there is a sufficient history for a pixel, TSSAO
produces smooth but crisp SSAO without depending on heavy
post-processing (image c).

Integration over time: In frame t, a new contribution Ct is
calculated from k new SSAO samples.

Ct(p) =
1
k

jt (p)+k

∑
i= jt (p)+1

C(p,si), (19)

where jt(p) counts the number of unique samples that have
already been used in this solution. The new contribution is

combined with the previously computed solution

SSAOt(p) =
wt−1(pt−1)SSAOt−1(pt−1)+ kCt(p)

wt−1(p−1)+ k
(20)

wt(p) = min(wt−1(pt−1)+ k,wmax). (21)

The weight wt−1 represents the number of samples that have
already been accumulated in the solution, until wmax has
been reached. The solution converges very quickly, and this
predefined maximum controls the refresh rate, and ensures
that the influence of older contributions decays over time.

Note that for TSSAO, spatial filtering of the result to reduce
noise only has to be applied in regions where the solution
has not sufficiently converged. This is done by shrinking
the screen-space filter support proportionally to the conver-
gence wn/wmax. The results of the filtering can be further
improved by making it convergence aware, i.e., assigning
higher weights to sufficiently converged filter samples.

Detecting changes: Special attention must be paid to the
detection of cache misses (i.e., pixels with an invalid SSAO
solution). A cached value of a pixel is invalid if either one of
the following three conditions has occurred: 1) a disocclusion
of the current pixel, 2) the pixel was previously outside the
frame buffer, or 3) a change in the sample neighborhood of
the pixel. Case 1) and case 2) can be handled like conventional
cache misses as described previously in Section 3.3. However,
it is important to additionally check for case 3), because
nearby changes in the geometry can affect the shading of the
current pixel.

The authors use sampling to check the neighborhood of
a pixel for changes in the AO value. In practice, this neigh-
bourhood test does not introduce additional lookups, as the
available set of samples used to compute Ct(p) can be reused.
It is an important observation that a contribution C(p,si) only
varies if the configuration of a sample position si relative to p
changes (e.g., the AO on a rotating object only changes in the
vicinity of other objects). Hence, as illustrated in Figure 21,
the algorithm uses the distance differences

δ(si) = ||si−p|− |sit−1 −pt−1|| (22)

as a measure of change. The change in the surface angle
between si and p could have been used additionally, but it
would have caused an additional overhead. It is sufficient to
use those samples that lie in front of the tangent plane of p
for the neighborhood test, since only those samples actually
modify the shading.

Smooth invalidation: Consider for example a slowly de-
forming surface, where the SSAO will also change slowly. In
such a case it is not necessary to fully discard the previous
solution. Instead the authors introduce a new continuous defi-
nition of invalidation that takes a measure of change into ac-
count. This measure of change is given by δ(si) at validation
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Figure 22: Moving dragon model using no invalidation (left,
causing severe artifacts in the shadow), and using an invali-
dation factor set to a proper value (right, no artifacts).

sample position si, as defined in Equation 22. In particular,
the algorithm computes a confidence value conf(si) between
0 and 1. It expresses the degree to which the previous SSAO
solution is still valid:

conf(si) = 1− 1
1+Sδ(si)

. (23)

The invalidation factor S is a parameter which controls
the smoothness of the invalidation. The overall confi-
dence conf(p) in the previous SSAO solution is given by
min(conf(s0), ..,conf(sk)). This value is used to attenuate
the weight wt given to the solution of the previous frame in
Equation 21. Figure 22 shows the effect of the invalidation
and smooth invalidation factor on a scene with a moving
object.

5.5.2 Instant radiosity
Instant radiosity [Kel97] is a hardware-friendly global illu-

mination method that computes so-called virtual point lights
(VPLs) along the intersections of a light path with a surface
and uses them for indirect scene illumination. The visibil-
ity is resolved by computing an individual shadow map for
each VPL. The shadow-map computation is also the main
bottleneck of the algorithm, as it requires sampling the scene
many times for a reasonable number of VPLs. This drawback
prevents real-time frame rates for the original version of this
algorithm. In the following we will demonstrate how to use
object-level and pixel-level TC to improve performance and
visual quality of this important global illumination algorithm.

Incremental instant radiosity: By reusing VPL visibility
over time, Laine et al. [LSK∗07] proposed a method that
exploits object-level TC to reach real-time frame rates. For
the sake of performance, this algorithm only computes first-
bounce indirect illumination, which is sufficient in most cases.
Even so, hundreds of shadow maps are needed for convincing
global illumination. In order to keep the number of VPL
computations per frame feasible for real-time purposes, this
algorithms reuses the valid VPLs from the previous frame
and recomputes only a small budget of invalid shadow maps
in a frame. A VPL stays valid if it is within the light frustum
and is not occluded from the light source (which is tested
with a ray caster). The algorithm is visualized in Figure 23.

Figure 23: (Left) Instant radiosity shoots paths from the light
source, and creates virtual point lights at the intersection with
geometry. (Middle) Using shadow maps, the visibility of each
VPL and their contribution to the current image is determined.
(Right) Temporal coherence: When the view point or light
source moves, one of the VPLs becomes invisible from the
light source, all the others are reused. Image courtesy of
Samuli Laine.

Figure 24: An uniform distribution on the unit disc corre-
sponds to a cosine-weighted distribution on a hemisphere.
The VPL management aims to keep the uniformity of the
VPLs on the unit disc while recomputing a budget of VPLs
per frame. Image courtesy of Samuli Laine.

The main task of this algorithm is to incrementally main-
tain a good distribution of the VPLs during consecutive
frames. Assuming a 180◦ spotlight, the algorithm uses the
fact that a cosine-weighted distribution on a hemisphere cor-
responds to a uniform distribution on a disc (shown in Fig-
ure 24). In order to manage the VPL distribution on the unit
disc, the algorithm creates a 2D Delaunay triangulation. To
choose the best position for new VPLs, the algorithm min-
imizes dispersion, which is computed as the radius of the
largest empty circle that contains no sample points. In case
of omni-directional light sources, the algorithm operates on
the unit sphere instead of the unit disc.

Note that the algorithm captures changes in the scene with
a certain latency, and shadows cast from dynamic objects are
not supported. The authors report a speedup from 1.4–6.8 for
different scenes and resolutions. In their tests, they fixed the
number of VPLs to 256 and the recomputation budget to 4–8
VPLs.

Imperfect shadow maps: Based on the observation that
coarse visibility is sufficient for low-frequency global illumi-
nation, Ritschel et al. [RGK∗08] significantly accelerate the
VPL generation for instant radiosity. They use a point-based
scene representation, and distribute these points among the
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VPLs to generate so-called imperfect shadow maps. While
each shadow map is sampled with only a coarse subset of
scene points, holes can be closed with a pull-push algorithm.
This method allows hundreds of shadow map-based visibility
queries per frame in at least interactive time.

However, even such a large number of queries is insuffi-
cient to avoid typical undersampling artifacts, e.g., resulting
in flickering between frames if the VPLs are recomputed. In
order to improve the visual quality and reduce these artifacts,
it is straightforward to combine the imperfect shadow-map
approach with temporal reprojection.

Recently, the undersampling issues were addressed to some
extent by relying on a view-adaptive solution [REH∗11]. The
idea is to update a part of the point-based scene representa-
tion for each frame, thereby ensuring more precision where
surfaces visible to the observer are affected. Also, the VPL
selection and placement is optimized by proposing a novel
scheme. By selecting appropriate VPLs from a large set of po-
tential VPLs depending on their estimated impact on the visi-
ble scene from the observer, much higher fidelity is achieved.
Further, by employing a novel VPL-placement scheme for
dynamic light sources, they tend to move in a more continu-
ous way over continuous surfaces. Therefore, the temporal
consistency of indirect illumination is significantly improved.

The main problem of using TC for global illumination is
the global nature of changes of the lighting conditions and the
scene configuration – some tradeoff between smoothing and
correctness is inevitable and a satisfactory general solution
is hard to find. Knecht et al. [KTM∗10] chose to use a con-
fidence value instead of a binary threshold for invalidation.
In particular, the confidence in reusing a previous solution
is guided by the amount of change of a pixel between the
previous and current frame. To this end, they introduce a
couple of parameters:

εpos = ||(xt − xt−1;yt − yt−1;dt −dt−1)wp||
εnorm = (1−n ·nprev)wn

εill = saturate(||It − It−1||3)wi

con f = saturate(1−max(εpos;εnorm;εill))cB. (24)

The three ε terms compute three distance values of screen-
space position and depth, normal, and illumination value
respectively. The weights wp, wn, and wi are highly scene
dependent and require fine tuning by the user. The final confi-
dence is computed as the maximum of these measures mul-
tiplied by some base confidence cB, and is then used as the
weight of a standard exponential smoothing operation (see
Section 3.5).

As can be seen in Figure 25, TC improves the quality
and reduces the noise caused by the undersampling. The
quality improvement is most visible during animations, where
distracting flickering artifacts due to varying VPL positions
can be avoided using TC. Due to the low-frequency nature
of indirect illumination, the artifacts caused by moving light

Figure 25: Imperfect shadow maps still show some artifacts
with 256 VPLS, which can be smoothed out using TC. Image
courtesy of Martin Knecht.

sources and animated objects are not very distracting in the
general case (they are similar to motion blur).

5.6 Spatio-temporal upsampling
In addition to TC, also spatial coherence may exist within

shading signals (e.g., low-frequency diffuse shading). Herzog
et al. [HEMS10] proposed a spatio-temporal upsampling tech-
nique that exploits temporal and spatial redundancy. Strong
temporal changes (e.g., moving lights) are handled with spa-
tial upsampling, while coherency is exploited to ensure a
high-quality convergence via temporal upsampling. Such
spatio-temporal filtering is often applied for video restora-
tion [Tek95, BM05] and can also be used to suppress aliasing
artifacts [Shi95].

The basic approach of spatio-temporal upsampling follows
a joint- or cross-bilateral upsampling [TM98, SB95, ED04,
PSA∗04, KCLU07, YSL08] scheme:

ft(p) =
1

∑wswtw f

T

∑
q=0

∑
j∈N{pq}

ws(pq, j) wt(pq, j) w f (q) f l
t−q( ĵ), (25)

where N describes a spatial neighborhood around a pixel
and q is an index that indicates the frames over time. Hence,
the double summation takes space and time into account.
Weight ws computes the world-space distance and similarity
of samples based on surface properties such as normals or
material indices. Weight wt is a binary occlusion test, check-
ing whether the reprojected pixel pq = πt-q(p) is actually
visible in the corresponding frame. Weight w f describes a
temporal fadeout that reduces the influence of older pixels.
The term 1

∑ wswt w f normalizes the weighting coefficients. The

term f l
t−q are low resolution frames that were created using

an interleaved pixel refresh at time t−q and consequently, ĵ
is the index of the nearest pixel in the low-resolution image
that corresponds to pixel j . While, in theory, it seems that
many previous frames have to be kept in memory, choosing
exponential weights allows for an accumulation in a single
history buffer [HEMS10].

Nonetheless, when involving samples from previous
frames, it is important to detect which pixel shading val-
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ues are still useful for the current frame. For a fast moving
light, for example, shadows might change their location and
easily pollute a temporal integration. In order to capture these
effects, Herzog et al. proposed to examine the temporal gradi-
ent of the previously constructed frame and the only spatially
upsampled current frame. If the gradient is low, more con-
fidence is given to temporal weights, if not, the algorithm
favors spatial upsampling techniques to produce the final
high-quality version of the current frame. The intuition is
simple. If a region of an image changed little over time, it is
useful to exploit more samples from previous frames, whereas
if strong changes occurred, older values should be consid-
ered unreliable. In order to make this solution more robust to
outliers, a temporal smoothing is applied to the gradient.

Each low-resolution shading frame f l
t−q is produced using

interleaved sampling, meaning that the camera is changed to
ensure that when putting all low-resolution images together,
one can actually produce a complete high-resolution render-
ing without artifacts. In practice, the temporal fadeout makes
it impossible to ensure a perfect match, but the quality is still
higher than for spatial or temporal upsampling alone.

5.7 Frame interpolation

Frame interpolation is widely applied in video encoding
and uses temporal redundancy to allow for a better compres-
sion behavior. We will investigate compression and streaming
briefly in Section 5.10. Here, we analyze a second reason to
employ frame-interpolation strategies: hold-type blur.

Nowadays, hold-type displays, such as LCD screens, show
an image over a longer period of time instead of flashing it on
the screen. The resulting perceptual effects are very interest-
ing. In fact, moving content is perceived blurred because the
eye tracks the content over the screen. During the eye motion,
the image content stays partly constant (due to an insufficient
frame rate), which leads to an integration of the image on the
retina (not unlike motion blur) [KV04]. For a long time, a lot
of the blur perception was wrongly attributed to the display’s
response time, but Pan et al. [PFD05] showed that only 30 %
of the perceived blur are a consequence of it. The remaining
70 % are mostly a result of hold-type blur. Especially for low
frame rates, this effect can have dramatic consequences and
reduce the image quality drastically [Jan01], but even reaction
times decrease and task performance is reduced [DER∗10b].

Modern TVs try to optimize image quality by employing
interpolation schemes [FPD08]. While an accurate interpo-
lation and matching of content over time can become very
difficult for a TV set because optical flow is challenging to
compute robustly, a rendering context offers many advantages
since the problem is actually much simpler. It is possible to
derive accurate velocity and geometric information from a
scene by simply rendering it into a buffer. Thereby, one can
avoid approximate image-based estimates. TV sets are still
successful in many cases because, at high frame rates, the
precision of our perception is reduced. Consequently, inter-

mediate images do not have to exhibit the same quality as
key frames.

Didyk et al. [DER∗10b] introduced a method that builds
upon the observation that intermediate frames can be of lower
quality and exploit the effect algorithmically. Their approach
produces a high-frame rate sequence that is then directly fed
unaltered to a high-refresh LCD screen.They rely on the key
observation that the human visual system spreads high fre-
quencies of one frame over succeeding blurred frames if a
sufficiently high frame rate is reached [TV05]. Therefore,
they can hide potential artifacts in warped frames. More pre-
cisely, they extrapolate a given image and blur all parts of
the warped image that might potentially exhibit a reduced
image quality. The frequencies that are lost by the blurring
process in the extrapolated frames can be compensated for
in the unwarped original frame. In the affected regions, the
amplitude of the high frequencies is increased according to
the blur that is applied to the successive frames. Because
artifacts are hidden by the blur, a very cost-effective grid
warping strategy can be used. This grid is deformed by ve-
locity vectors that are directly extracted from the scene, and
a snapping process ensures that the main discontinuities are
respected. The technique is successful enough to enable the
addition of two intermediate frames. In other words, a 40
Hz sequence can be transformed into a 120 Hz output that is
almost indistinguishable from an actually rendered 120 Hz
sequence, which was confirmed by a user study.

Andreev [And10] also proposed a temporal upsampling
scheme, but makes use of an approximate image-based warp-
ing strategy. He targets only a single in-between frame to
successfully transform 30 Hz sequences to 60 Hz. The idea is
to rely again on a frame extrapolation, but to further separate
static and dynamic content. Static elements are usually well
handled by warping strategies, but dynamic objects can hide
– and when warped, unveil – important parts of the scene.
Consequently, holes can appear in the extrapolated frames.
Andreev proposes to copy static pixel patches from the neigh-
borhood to fill up these holes. The dynamic content is then
added on top of the final shot. The algorithm is useful and
well-adapted for current game consoles (XBox, PS3). It finds
application in several shipping game titles, which shows its
practical relevance. Andreev also explores a solution that
interpolates between two frames for more accurate results.
He reports that it requires more computational resources and
adds an extra frame of latency, which is unsuitable to their
games.

Concurrent with Andreev’s talk [And10], Yang et
al. [YTS∗11] introduced a method that interpolates a pair
of consecutive rendered frames. They proposed a new image-
based reprojection strategy as described in Section 3.2, which
is used to retrieve the information from both rendered frames
for each interpolated frame. The method avoids rasterizing
scene geometry altogether at these intermediate frames and is
very efficient. With their implementation, using the future ren-

c© 2014 The Author(s)
Journal compilation c© 2014 The Eurographics Association and Blackwell Publishing Ltd.



D. Scherzer & L. Yang & O. Mattausch & D. Nehab & P. Sander & M. Wimmer & E. Eisemann / Temporal Coherence Methods

Figure 26: Examples of stylizing a frame from a rendered
3D animation of a tank scene (left) and a 3D animation of a
lizard with a still photograph in the background (right).

dered frame only introduces a small amount of lag, and their
user studies show that the effect of this lag was minor. The
method yields substantial performance improvements to both
vertex-bound and pixel-bound scenes, as well as multi-pass
rendering techniques, such as deferred shading and motion
blur.

5.8 Non-photorealistic rendering
Real-time reprojection has also been used by a non-

photorealistic rendering (NPR) system that converts ani-
mated scenes to artistic brush-stroke renderings of different
styles [LSF10]. Computing a new set of NPR strokes from
scratch in each frame of an animation sequence results in sig-
nificant flickering artifacts. Instead, the algorithm maintains
temporal coherence by treating brush strokes as particles and
advecting the vast majority of them accoding to the scene
motion.

In order to advect brush strokes, the algorithm generates a
buffer that stores per-pixel forward motion vectors for the an-
imated scene. This buffer can be efficiently computed on the
GPU by using reprojection to calculate the forward motion
vector from frame t−1 to frame t in the vertex shader. The
motion vector is interpolated by the hardware and provided
as input to the pixel shader. Much like traditional reprojec-
tion, the pixel shader homogenizes the motion vector and
then outputs the result to the render target in the clip space
of frame t− 1. Finally, each brush stroke particle uses this
motion vector buffer to forward reproject its position from
frame t−1 to frame t. Figure 26 shows examples of synthetic
scenes rendered with this system.

Recently, solutions also focused on different ways of at-
taching brush strokes to extracted feature curves. SLAM
textures [BCGF10] (self-similar line artmaps) are a means to
produce a multi-resolution representation of a stylized line
pattern. Basically, the stylized pattern is self-similar on sev-
eral resolution levels. This property is assured by performing
a suitable texture synthesis algorithm that derives smooth
transitions from a simple pattern to a more detailed higher
resolution version. During rendering, the appropriate detail

level can be chosen from the SLAM representation. Unfor-
tunately, when moving elements over time, these strokes,
while maintaining a coherent look, may slide over the sur-
face as the extracted feature lines on the mesh and, hence,
their parametrization may change. The approach suggests to
keep similar texture coordinates over time by reprojecting the
parametrization when computing the next frame.

Kalnins et al. [KMM∗02, KDMF03] avoid the use of spe-
cialized line patterns and instead proposed to optimize the
line parametrization itself. They also focus on temporally con-
sistent textured lines and aim at minimizing the mentioned
sliding or stretching that would occur for naive parameteriza-
tions. By tracking particle-like curve elements on the surface,
they enable a certain continuity of the rendering. Nonetheless,
topological changes of the extracted feature curves cannot be
easily parameterized as they are inherently inconsistent. By
analyzing a defined animation sequence, one can detect topo-
logical events using a space-time contour surface [BFP∗11].
By coupling cuts and merges, discontinuities are reduced and
the final parameterization is optimized via a least-squares fit
that optimizes texture sliding and stretch.

Kass and Pesare [KP11] introduced a method for gener-
ating coherent noise for NPR applications. Their method
achieves the illusion of random variation in the noise from
any given viewpoint in an animation sequence while remain-
ing temporally coherent. To preserve coherence, they employ
a recursive filter and handle disoclusion by comparing repro-
jected depth values much like in reverse reprojection caching.

Many other techniques take advantage of temporal coher-
ence for stylized animations. For a detailed treatment of all
these techniques, refer to the recent survey by Bérnard et
al. [BBT11].

5.9 Level-of-detail

The idea behind discrete level-of-detail (LOD) techniques
is to use a set of representations with differing complexities
(levels of detail) for one model and select the most appropri-
ate representation for rendering at runtime [LRC∗02]. Com-
plexity can for instance vary in the employed materials or
shaders or in the amount of triangles used. Due to memory
constraints and the effort involved in the creation process of
LODs, usually only a small number is employed, which can
result in noticeable popping artifacts when switching from
one representation to another. A theoretical solution would be
to switch only when the respective pixel output of two repre-
sentations is indistinguishable. This so called late switching
has practical problems. First, it is hard to guarantee equality
in pixel output for a given view scenario and lighting without
rendering both representations first, which of course defeats
the purpose. Second, the idea of switching as late as possible
counteracts the potential gain of employing LODs in the first
place. In practice, switching is done as soon as "acceptable".
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Figure 27: LOD interpolation combines two buffers contain-
ing the discrete LODs to create smooth LOD transitions. First
and second column: buffers; last column: combination. The
top row shows the two LODs in red and blue respectively.

5.9.1 Discrete LOD blending
A more practical solution to this problem proposed by

[GW06] is to include a transition phase during which both
LODs are rendered and then blended into the final im-
age [GW06]. Apart from other problems, this approach re-
quires that the geometry (and the shaders) of both LODs
have to be rendered in this transition phase, thereby gener-
ating a higher rendering cost than the higher quality level
alone would incur. To circumvent this, Scherzer and Wim-
mer [SW08] introduced a solution that performs LOD inter-
polation (see Figure 27). The idea is that by using TC, the
two LODs required during an LOD transition can be rendered
in subsequent frames. Two separate render passes are used to
achieve the transition phase between adjacent LOD represen-
tations: Pass one renders the scene into an off-screen buffer
(called LOD buffer). For objects in transition, one of the two
LOD representations is used and only a certain amount of its
fragments are rendered (see Figure 28), depending on where
in the transition (i.e., how visible) this object currently is.
This is later repeated in the next frame using the other LOD
representation and rendering into a second LOD buffer. The
second pass combines these two LOD buffers (one from the
current and one from the previous frame) to create the desired
smooth transition effect.

5.9.2 LOD cuts
Another particular representation is the use of scene hier-

archies for rendering purposes. The key idea is to represent a
scene in form of a tree where each node stores an approximate
scene representation for the given precision level correspond-
ing to a level in the tree. While one could start the search
for an appropriate cut (selection of nodes) for a given view
from the top of the tree, this solution is often wasteful. A
cut from one frame to the next rarely changes significantly,
as the view is very similar. Instead, a few local refinements
are usually enough. Consequently, many LOD approaches

# fragments

LOD K+1LOD K

distance

all

0
transition

Figure 28: Transition phase from LODk to LODk+1: left:
LODk; middle: midway in the transition all fragments of both
LODs are drawn; right: LODk+1; Below: First LODk+1 is
gradually introduced until all its fragments are drawn. Then
LODk is gradually removed by rendering fewer and fewer
fragments. The top two rows show the result of our method
and a false color illustration.

rely on a cut from the previous frame to find the new rep-
resentation [XV96, Hop97]. Due to the coherence from one
frame to the next, it is sometimes even useful to enforce a
limited number of local changes in order to bound the cost
of each cut modification from one frame to the next. There-
fore, such refinement strategies allow for an efficient GPU
implementation on modern hardware [HREB11].

While we assumed here that the scene is entirely present in
memory, for large scenes, this can actually become impossi-
ble. Nonetheless, as indicated above, only a small part of the
tree is actually needed (a few nodes around the derived cut).
Consequently, it is possible to restrict memory usage to a
minimum by removing all unnecessary nodes. This principle
leads to streaming solutions that we will investigate next.

5.10 Streaming
5.10.1 Large-data visualization

Streaming is a particularly challenging problem when deal-
ing with large datasets. Efficiency is of paramount impor-
tance, especially due to the wealth of scanned data that is
often tremendous in size. These difficult-to-render data sets
exceed available memory capacities by far.

Usually, data structures are used to decompose the original
data set in a hierarchical manner. The idea is to use structures
that can be selectively refined. Once the right refinement
scale is established for a view, only local modifications are
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Figure 29: At the basis of volume-data streaming algorithms is a hierarchical scene representation. Here, several levels of detail
are illustrated. The resolution is switched automatically during the ray-tracing step, depending on the distance. Not all data is in
memory at once, only the parts that are actually currently under use reside in memory.

applied to update the structure for the next frame, as seen
previously for LODs. This lazy update scheme implicitly
exploits TC because the modifications from one frame to the
next can often be drastically limited. In some cases, even
movement prediction can prove successful [LKR∗96]. In any
case, deriving an entirely new refinement would lead to a
huge performance overhead.

These hierarchical data structures are further designed in
a flexible way, in the sense that the actual geometric infor-
mation is only added to the data structure when there it is
requested during rendering. In fact, not all data is needed
at each point in time, as for a given viewpoint, unnecessary
details can be omitted using LOD schemes, as previously
mentioned. In particular, the use of occlusion culling leads
to a much smaller data subset that still produces a complete
image.

We cannot completely explore in-depth all solutions that
exist for the many different types of input data, varying from
geometric models [WDS04], over point clouds [WBB∗07], to
recent volume-rendering approaches [GMAG08, CNLE09].

To illustrate the principle, we will base our discussion on
ray-tracing queries. The main observation is that ray tracing
is a useful tool, not only to produce images, but also to deter-
mine data fetches [WDS04]. Typically, scenes are organized
in form of a tree (Figure 29 illustrates several levels of detail
corresponding to levels in this tree). Rays then traverse the
tree and test geometry intersections in each traversed node.
The idea is that initially each node of the tree can be empty
and will only be filled progressively during rendering. When-
ever a ray reaches such an empty node, a data request is
triggered and the ray potentially stopped, or traced against a
simplified representation that fits into memory. In this way,
the rays themselves control the level of detail, as well as
frustum culling, or occlusion tests. No special handling of ac-
celeration techniques is needed and, in particular, as rays tend
to vary little from one view to the next (e.g., for a small and
purely rotational movement of the camera, many rays remain
almost unchanged), the temporal redundancy is implicitly
handled.

Such strategies have proven particularly efficient in the
context of volume rendering [GMAG08, CNLE09]. Here, a

multi-resolution data representation is arranged in the tree,
and whenever data is missing, rays do not need to be canceled,
but can instead walk up the tree to access lower-resolution
versions of the data. To deal with the memory constraints,
such algorithms typically employ an LRU cache mechanism
(least-recently used), i.e., newly loaded elements will replace
those that have not been accessed for a longer time. As ele-
ments tend to be active over coherent periods of time, such
strategies prove particularly useful. They can be implemented
very efficiently on modern GPUs [CNSE10] and can even
serve in the context of global illumination [CNS∗11].

5.10.2 Remote rendering

Remote rendering is trend that is now receiving increased
attention. Many companies such as OnLive, OTOY or Gaikai
focus on the particular topic of game streaming. In such a
scenario, it is vital to exploit TC in order to reduce bandwidth
and computational effort on the server side.

In most cases, the underlying technology for game stream-
ing is closely related to video compression, with a few excep-
tions, which transfer API calls directly to the client [NDS∗08],
but such an architecture assumes very advanced client hard-
ware that can deal with all rendering commands.

Video-encoded rendering does not require a powerful
client, but the bandwidth requirements can be high. Hence,
temporal redundancy and perceptual limitations are a crucial
component for such encoding algorithms. For example, it is
possible to exploit the reduced accuracy of the human visual
system to pre-filter in-between frames to reduce the required
bandwidth [FB08].

Usually, video encoding makes use of so-called I-frames
that are only internally encoded (i.e., do not rely on previous
or future frames) and produce precise movie information.
These I-frames are rare and completed by P-frames that rely
on previous, and B-frames that make use of previous and fol-
lowing images. The latter type delivers quality-wise superior
results, but is difficult to exploit for real-time applications. Be-
cause of the dependency on future frames, a delay is enforced,
which can be particularly problematic for lower frame rates.
Furthermore, in the extreme case, if a frame drop occurs, very
noticeable artifacts can arise.
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A complete survey of video encoding goes beyond the
scope of this document. Here, we will describe some particu-
lar insights that relate to 3D rendering. Video compression
for rendering should exploit the particularity of the content.
One example is that many attributes can be extracted from
the 3D scene itself, which can then be used to improve the
compression algorithms. One can accelerate the encoding
process through the use of object motion vectors [FE09] that
are applied to predict pixel motion. The TC of the animation
in the scene is directly exploited. This solution can be very
successful and enable higher compression [WKC94] than
standard matching techniques.

It is also possible to go further and rely on the scene at-
tributes for reconstruction purposes. In fact, the previously
discussed spatio-temporal upsampling strategies (Section 5.6)
are very good candidates for application in a streaming con-
text [PHE∗11]. Such a combination has several advantages.
Not only the bandwidth, also the server workload is tackled
(only small resolution images are produced and transferred).
Furthermore, as the previous frame is still present on the
client when the new frame is supposed to be reconstructed,
the algorithm can exploit this knowledge during compres-
sion and rely on these values as predictors for statistics-based
encoding schemes [PHE∗11].

This field of research is still relatively young and is likely
to evolve significantly, but the mentioned recent advances
illustrate the importance of exploiting TC in this context.

5.11 Online visibility culling
Culling techniques like view-frustum culling [AM00] and

visibility culling are important acceleration techniques for
rasterization-based real-time rendering. While visibility is
often preprocessed in a lengthy offline step, online visibility
culling algorithms compute visibility on the fly for the current
view point. Typically direct hardware queries are used, so-
called occlusion queries. A common use of occlusion queries
is to conservatively test the visibility of a simple proxy geom-
etry, e.g., the bounding box of a more complex object.

5.11.1 Exploiting TC
The major challenge for any online culling algorithm is to

reduce the overhead caused by the visibility calculations (the
so-called occlusion queries), which can become unaccept-
able in situations when most objects in the scene are visible.
Hence it is vital to exploit TC, assuming that objects that
are (in)visible in one frame are likely to remain (in)visible
in future frames. Using TC, we can substantially reduce the
number of issued occlusion queries, as well as hide their
latency.

The following general strategy is implemented in differ-
ent forms by all state-of-the-art occlusion culling algorithms:
First, an algorithm establishes a visible front by rendering
those objects that were visible in the previous frame. Then
it queries the visibility of the previously invisible objects
against this visible front. Finally, to keep overdraw low, it

updates the visibility classifications of the objects from the
visible front. This can be done in a lazy manner, e.g., by
querying each object every n frames (assuming coherence
over several frames). The clever hierarchical z-buffer algo-
rithm proposed by [GKM93] uses both spatial hierarchies
and TC in the manner described above for maximal efficiency.
To accelerate visibility queries, it maintains a two-fold hier-
archy – an image pyramid over the z-buffer and an octree
hierarchy over the objects. The feasibility of this algorithm
suffers from the drawback that only parts of it are supported
by the hardware.

5.11.2 Coherent hierarchical culling (CHC)
Beginning with the NVIDIA GeForce 3 graphics card,

hardware-accelerated occlusion queries can be issued for
a batch of rendered geometry. While hardware occlusion
queries are fast, the queries still come with a non-negligible
cost, and they have a certain latency until the query result is
available on the CPU. Algorithms like the coherent hierarchi-
cal culling (CHC) algorithm [BWPP04] utilize TC to avoid
such CPU stalls and fill the latency in a meaningful way.

The algorithm exploits temporal and spatial coherence by
identifying invisible subtrees. To avoid wasted interior node
queries, it starts issuing queries at the previous cut in the hier-
archy (i.e., it queries previously invisible subtrees and visible
leaves). Furthermore, CHC assumes that previously visible
leaves stay visible, and never waits for their query result. In-
stead, these nodes are always rendered in the current frame.
Their visibility classifications are updated for the next frame
once the result is available. For this purpose, the pending
queries are managed in a dedicated query queue. Fortunately,
hardware occlusion queries provide a cheap way to check if
a query result is available. This way, it is possible to do some
traversal and rendering on the CPU while the GPU is busy
computing the query results, avoiding CPU stalls and GPU
starvation.

5.11.3 Making further use of temporal coherence
The original CHC algorithm works sufficiently well in

many situations, but still suffers from considerable overhead
because of the large overall number of queries and the rel-
atively high cost of individual queries. The CHC++ algo-
rithm [MBW08] addresses these drawbacks by making better
use of temporal and spatial coherence. It extends the CHC
algorithm with a couple of simple but effective optimizations.

CHC++ issues batches of queries instead of individual
queries. This is based on the observation that a huge portion
of the individual query cost in CHC is caused by GPU state
changes due to the constant interleaving of render and query
mode (e.g., depth write on / off). The coherence among nodes
in a batch is exploited by assuming that mutual occlusion of
these nodes is not relevant.

CHC++ compiles multiqueries, which are able to cover
more nodes by a single occlusion query. This method is able
to reduce the number of queries for previously invisible nodes
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Figure 30: Comparison of view frustum culling (VFC), view
frustum culling and potentially visible sets (VFC+PVS), and
online visibility culling using CHC++ [BMW∗09].

up to an order of magnitude by making better use of TC. The
decision of including a node in a multiquery is based on its
history. Nodes that were invisible for a long time are likely to
stay invisible, hence they can be handled by a single query.
A failed multiquery means that the nodes must be tested
individually, wasting one query while increasing the overall
number of queries by one. Hence the authors introduced a
cost-benefit model (based on the likelihood of a node to stay
invisible) which minimizes the number of queries. Note that
the nodes can be spatially completely unrelated.

Lazily issuing queries for previously visible nodes every
n frames (which was an option in CHC) has the danger of
sudden frame rate drops. These happen because of many
queries being issued in the same frame due to simultaneous
visibility changes (e.g., all rooftops of a town become visible
in the same frame). To avoid this negative effect of coherence,
CHC++ applies a temporally jittered sampling pattern for
scheduling those queries.

Figure 30 shows timings in the Powerplant scene with
12M triangles (using a NVIDIA GeForce 280 GTX). Inter-
estingly, online visiblity culling with CHC++ is typically
faster than rendering based on preprocessed potentially visi-
ble sets (PVSs). This is because the computational overhead
of CHC++ is less than the rendering overhead due to the
more conservative preprocessed visibility solution (i.e., it
overestimates the objects visible from the current view point
as visibility is stored per region).

5.12 Temporal perception
This report presented several algorithms that exploit TC of

data, leveraging the redundancy of information over time. But
in fact, TC can also be used in an inverse manner to produce
richer content by exploiting elements of perception, which
seems to be a very promising avenue for future endeavors.
Even physically incoherent signals of high variance can be
perceived as temporally coherent under certain circumstances.
A simple example is a flash light strobing at very high fre-
quency. At some point, we will no longer be able to see the

flickering effect and perceive a coherent lighting. In fact, CRT
screens made direct use of these observations. When working
with such perceptual temporal coherence, many new possibil-
ities become available. Here, we will focus on two examples
(color and resolution increase) that represent first steps in this
direction of research.

One of the oldest examples to enrich graphics by exploit-
ing temporal effects is to rely on flickering to increase the
computer’s color palette. The most prominent representatives
of such a technique are DLP projectors, which display, in a
coherent way, the three color channels of an image in rapid
succession. These separate signals are then integrated by the
eye so that an observer perceives a fully colored image.

Similar to the DLP principle, one can increase the available
colors of a screen or machine. Back when color palettes were
limited, having darkened tints of colors (e.g., for shadows)
was not always possible. By flickering the corresponding ele-
ments on the screen, a simple solution to extend the palette
was born. For an observer, these flickered colors mix because
at higher frame rates the eye no longer distinguishes each
frame individually. The same procedure is often employed in
LCD screens under the name of frame rate control. In prac-
tice, the material is often limited to 6 bits per color channel,
whereas the graphics card produces 8-bit color channels. The
solution is to represent fractional colors by displaying the
immediate neighbors in quick succession over time [Art04].
Again, the eye integration delivers the illusion that what was
observed on the retina is actually the fractional color value.

Another way to influence color perception involving the
temporal domain is to make use of adaptation. When looking
for a longer time at a bright source, the source imprints its
image on our retina in form of an afterimage in opponent
colors. This phenomenon relates to receptor bleaching. By
making use of a computational model of this effect, the mech-
anism can be simulated and can lead to a perceived increase
of brightness [RE12].

Besides more colors, resolution and details can also be
addressed. It is known that object discrimination is more
successful for subpixel camera panning than for correspond-
ing static frames [KDT05, BSH06]. Didyk et al. [DER∗10a]
further explored this observation by taking into account the
temporal coherence of eye movement for apparent resolution
enhancement. In other words, they are able to produce the
illusion of high resolution on a low-resolution screen and,
thereby, even surpass the physical boundaries. More precisely,
their setup is a low-resolution screen on which moving con-
tent is displayed at a high refresh rate. When the eye starts
tracking the information on the screen, several frames will
be successively integrated on the retina. By predicting the
eye movement, it is possible to derive an image sequence
such that the integrated response on the retina approaches a
high-resolution image content. The accuracy of the tracking
is assured by the human visual system’s smooth-pursuit eye
motion. This mechanism leads to an almost perfect stabi-
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lization for steady linear motion with velocities in the range
of 0.625− 2.5◦/s [LRP∗06]. The low-resolution image se-
quence itself is derived using an optimization framework that
takes eye integration and flicker perception into account to
ensure that this sequence integrates properly on the retina.
The solution has recently been extended to general animation
sequences including arbitrary movements and general scenes
by assuming the eye movement to be related to the underlying
optical flow [TDR∗11].

6 Summary

In this report, we have described real-time rendering tech-
niques that take advantage of temporal coherence by reusing
expensive calculations from previously rendered frames. As
a result, both performance and quality of many common
real-time rendering tasks can be improved.

We started by showing that real-time rendering applica-
tions exhibit a significant amount of spatio-temporal coher-
ence, thus motivating data reuse in shading computations. We
then briefly surveyed the historical approaches focused on
off-line methods before describing the real-time techniques
which constitute the main focus of this report. We introduced
the basic algorithm for performing real-time reprojection on
the GPU. The approach allows the shader to efficiently query
shading results from an earlier rendered frame (reverse repro-
jection), or similarly, map a shading result from the current
frame to the next frame (forward reprojection). We then an-
alyzed the quality vs. speed tradeoffs associated with data
reuse.

We presented several applications that take advantage of
data reuse. We started with the basic application of directly
reusing results of an expensive shading computation, such as
the previous results of a procedural noise shader. For applica-
tions that accumulate results from multiple renderings of the
same scene, such as stereo, motion blur, and depth-of-field
rendering, we showed how to reuse shading results from a
“central frame” when rendering the remaining accumulated
frames, thereby reducing rendering times considerably.

Some expensive per-pixel computations often require ap-
proximating an integral by combining multiple spatial sam-
ples, such as shadow computation. To address those scenarios,
we described how to amortize computation by combining re-
sults from multiple frames in order to achieve better results
for antialiasing, pixel-correct shadows, and soft shadows,
among other applications. Using reprojection for these tech-
niques allows for a much larger number of samples for the
same rendering time budget. The amortized approach also
allows for a smoothly varying shading result instead of the
“all or nothing” reuse strategy of the earlier applications that
either fully reuse the earlier results or compute it entirely
anew. We showed significant improvement in quality and
speed for these amortized approaches and analyzed the trade-
off between lag and aliasing in the rendered result. We also
showed how TC can be used to compute not only efficient

shadows from a light source, but also efficient global illumina-
tion approximations through amortization. We then presented
techniques to combine both spatial and temporal upsampling
using a joint bilateral filter that considers samples from re-
cently rendered frames, and how to increase framerates by
generating new intermediate frames by taking advantage of
TC.

Finally, we showed how TC can be used to improve quality
or accelerate a variety of tasks. Forward reprojection was ap-
plied to smoothly advect brush strokes for non-photorealistic
rendering of animated scenes. TC was used to render tran-
sition phases for discrete LOD blending, thereby avoiding
popping artifacts and creating a smooth transition between
levels of detail. We then showed how TC has also been ex-
plored for streaming content, such as improved compression
for remote rendering of synthetic scenes (e.g., games), and
large-data visualization. Another area that has been explored
is how to use TC to accelerate occlusion culling. Finally, we
showed techniques that consider elements of perception of
the human visual system in order to increase the apparent
number of colors and apparent resolution of the image.

To summarize, this report surveyed strategies for reusing
shading computations during real-time rendering. These
strategies are very generally applicable as demonstrated on a
very large number of different application scenarios. While
relatively recent, this research trend has already found uses in
the gaming community. We hope that in this process, we have
convinced the reader that taking advantage of temporal coher-
ence can vastly reduce shading computation in a very large
number of rendering scenarios. With the continued increase
in complex shading effects, frame rates, screen resolution,
and rendering hardware features, we expect that techniques
that take advantage of temporal coherence will become even
more prevalent.
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