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Figure 1: Given a set of cluttered 3D point clouds of building interiors (LEFT), we use fitting rectangles of the planar components as
simplified scene description, and separate those belonging to permanent structures (green) from clutter (red) (MIDDLE). From the dominant
planes of the permanent components we build a 3D cell complex, whose cells are partitioned to create individual room polyhedra (RIGHT).

Abstract
Reconstructing the as-built architectural shape of building interiors has emerged in recent years as an important and chal-
lenging research problem. An effective approach must be able to faithfully capture the architectural structures and separate
permanent components from clutter (e.g. furniture), while at the same time dealing with defects in the input data. For many
applications, higher-level information on the environment is also required, in particular the shape of individual rooms. To solve
this ill-posed problem, state-of-the-art methods assume constrained input environments with a 2.5D or, more restrictively, a
Manhattan-world structure, which significantly restricts their applicability in real-world settings. We present a novel pipeline
that allows to reconstruct general 3D interior architectures, significantly increasing the range of real-world architectures that
can be reconstructed and labeled by any interior reconstruction method to date. Our method finds candidate permanent compo-
nents by reasoning on a graph-based scene representation, then uses them to build a 3D linear cell complex that is partitioned
into separate rooms through a multi-label energy minimization formulation. We demonstrate the effectiveness of our method by
applying it to a variety of real-world and synthetic datasets and by comparing it to more specialized state-of-the-art approaches.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Boundary representationsCurve, surface, solid, and object representations

1. Introduction

In the fields of architecture, construction, and civil engineering
there is an increasing need for computer-assisted pipelines to ex-
tract accurate and semantically rich 3D models of buildings from
raw measured data. Such models are meant to represent the “as-
built” condition of structures (as opposed to the way they were de-
signed) and are therefore largely focused on the permanent com-
ponents of a building. Better known as as-built Building Informa-
tion Models (BIMs) [THA∗10], they can be used to evaluate how
faithfully structures were actually built with respect to their origi-

nal design, to plan renovations and modifications to the layout, and
also for advanced tasks such as energy performance analysis. These
tasks require not only an accurate model of the permanent elements
of the building, but also higher-level information about the environ-
ment – first and foremost the subdivision into different rooms.

However, the development of such pipelines is made difficult by
a number of factors. Realistic building interiors are typically clut-
tered with furniture and other objects. Not only is it necessary to
separate these elements from the structural shape of a building, but
they also generate viewpoint occlusions resulting in missed sam-
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pling of the permanent structures. Moreover, under these condi-
tions traditional criteria for detecting boundaries between differ-
ent rooms are error-prone and unreliable. In spite of recent re-
search efforts, a satisfactory solution to this ill-posed problem has
not been proposed yet. Specialized indoor reconstruction pipelines
typically try to reduce the complexity of the problem by assuming
that walls are vertical [OLA14,CF14,TZ14,MMJV∗14,OVWK16]
or by relying on the Manhattan-World assumption [TZ12, IYF15].
While such simple assumptions increase robustness, many ar-
chitectural elements of real-world buildings deviate from verti-
cal walls with perpendicular arrangements. More recent meth-
ods [TZ14,MMJV∗14, IYF15], which are otherwise capable of de-
tecting individual rooms in the environments processed, still suffer
from a 2.5D restriction. On the other hand, methods for general sur-
face reconstruction [BTS∗14] can represent arbitrary geometry, but
do not distinguish between permanent components and clutter and
generally assume occlusions-free input data.

This paper introduces a novel pipeline for reconstructing the ar-
chitectural shape of multi-room/story building interiors that is ca-
pable of handling a significantly larger class of real-world environ-
ments. As a sufficiently expressive model to capture the majority
of real-world interiors, our method lifts the restrictive Manhattan-
World and 2.5D assumptions and uses piecewise-linear structures
and structural soundness as the only priors on the environment. To
our knowledge, this is the first method that can reconstruct preva-
lent 3D structures such as slanted walls and sloped ceilings robustly
and in a unified manner from cluttered indoor datasets.

Our pipeline considers as input data a set of 3D point clouds,
aligned to a common reference space and enriched with basic in-
formation like normal, splat size, viewpoint and segmentation into
co-planar patches [MMJV∗14], and produces as output a set of wa-
tertight polyhedra representing the boundaries of the rooms in the
environment. The reconstruction is driven by the main architectural
structures, while fine-grained details (e.g. small cavities and pro-
trusions in the walls) are not in the focus of this work and do not
appear in the final model. The processing is split into the following
two main stages (see also Fig. 1).

Detection of permanent components. The input point clouds are
converted into a graph-based representation that encodes the pla-
nar components of the scene and their adjacency relations. The
permanent components (i.e., the static architecture) are then sep-
arated from clutter (non-structural components like furniture) by
reasoning on the structural relations between adjacent compo-
nents based on six rules. In a cluttered environment, this is es-
sential for making the further processing steps feasible.

Volumetric reconstruction of rooms. The planes of the perma-
nent components are used to build a 3D cell complex that par-
titions the scene into polyhedral cells. A visibility-based clus-
tering is then applied to find the approximate location of the in-
dividual rooms, which are finally reconstructed by applying a
multi-label optimization to the set of polyhedral cells.

To remove the ambiguities that can naturally arise from such
a general model, the first step can be complemented by an op-
tional interactive step, in which the user is allowed to correct the
results generated automatically through simple sketches. We fur-
ther introduce non-trivial extension of consolidated techniques for

indoor reconstruction that make a fully-3D pipeline feasible. These
include: an approach inspired by structural analysis to extracting
the permanent components of an indoor scene from its adjacency
graph; an automatic approach based on the Markov Cluster Algo-
rithm [VD08] driven by visibility information to detect the number
and an initial location estimate of the rooms of an indoor environ-
ment; a multi-label energy minimization formulation for the room
reconstruction problem that enforces clearly separated and regular
room shapes in complex multi-room environments.

2. Related Work

The topic of indoor reconstruction is closely related to the more
well-studied problem of recovering the outer shape of urban struc-
tures, though the issues to be addressed are different. In fact,
geometric regularity and occlusion-free data are common as-
sumptions when reconstructing outdoor structures, both at a city-
scale [VLA15] and at the level of individual buildings. In this
context, the very restrictive Manhattan-world assumption (also
widely used for interiors) has been used to reconstruct build-
ings as unions of box-like structures [VAB12]. Some approaches
are able to capture less regular geometries for more generic
piecewise-planar scene reconstruction by using binary space par-
titioning (BSP) [CLP10, BdLGM14] or tetrahedral space partition-
ings [LA13]. Such methods rely on the intersection parity of vis-
ibility rays to perform the inside/outside segmentation, which is
bound to fail in cluttered and heavily occluded settings such as real-
world indoor environments. Furthermore, none of these methods
performs a separation between structural components and clutter
nor deals with the detection of rooms.

In recent years several methods specialized on interiors have
been proposed. For virtual reality and interactive exploration,
panoramic images can be used as input sources, often in con-
junction with 3D data from multi-view stereo, to produce geo-
metrically simple yet textured models. In this context, various
starting assumptions are used, ranging from the Manhattan-world
prior [CF14] to the simple verticality of wall structures [PGG∗16];
however, the final models are normally obtained by vertical ex-
trusion of a 2D floorplan of the environment with respect to the
ceiling height. Even in domains in which accuracy is vital (e.g.
architecture and civil engineering) and dense 3D measurements
are used as input, the top-view of the building is often the pri-
mary goal of the reconstruction. Some of these methods are re-
stricted to piecewise-linear floorplans [BB10, MMJV∗14], while
others also capture rounded walls [TZ12]. In contrast, our pipeline
allows for arbitrary orientations of the permanent structures, by us-
ing a generic 3D BSP scene representation. With some notable ex-
ceptions [AH11, MMJV∗14], many of these methods disregard the
problem of occlusions and missing regions, or use only a simple
2D neighborhoods analysis to distinguish between clutter and per-
manent structures [OLA14], which would not work in full 3D en-
vironments. Hence we impose a graph-based scene representation
and use a more sophisticated structural analysis to find a reliable
classification into permanent structures and clutter.

In more recent approaches, the attention has shifted towards the
extraction of semantic properties, such as a segmentation into in-
dividual rooms [TZ14, MMJV∗14], in some cases together with
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Figure 2: For cluttered environments, alpha-shapes adhere to re-
gion boundaries generated by occlusions (a). Oriented rectangles
represent a more reliable proxy for the shapes of interest (b).

their mutual arrangements [IYF15, ASZ∗16, OVWK16], but are
again restricted to 2.5D environments. Aiming at a multi-room re-
construction poses the additional problem of estimating the num-
ber of rooms, where previous work relies on iterative heuris-
tics [MMJV∗14] or subsequent merging steps [OVWK16] in a
2.5D setting. Instead, to get a proper first estimate for the room
shapes in a general 3D environment, we employ a visibility clus-
tering method with respect to given view points [DBGBR∗14] and
adapt it to the context of indoor reconstruction. For the final room
labeling, we introduce novel energy terms that are intuitive and sig-
nificantly improve the room segmentation results.

3. Detection of Permanent Components

The input to the first step of our pipeline is a set of 3D point clouds
acquired at known positions of an indoor environment (from at least
one location in every room) and registered in a single reference
frame. The input point clouds are enriched with per-point normals
and splat-sizes and with a segmentation into patches of co-planar
points, as described in related work [LA13,MMJV∗14,OVWK16].
To reduce the complexity of subsequent steps in the pipeline, in
particular the construction of a space partitioning, it is important
to separate the components that belong to the permanent architec-
ture from clutter in a meaningful way that incorporates information
about structural soundness. The input point clouds are not well-
suited for reasoning on the structure of the environment and only
convey information about local geometric features. Hence they are
converted into a higher-level graph structure that encodes the planar
components of the scene, along with their adjacency relations.

3.1. Building the Adjacency Graph

We convert the input point-based models into a more compact and
semantically richer adjacency graph Gadj = (V,E). In this struc-
ture, used in many shape analysis approaches [LMS13], the set of
vertices V encodes the individual parts of the model considered,
while E represents the adjacency relationships between such parts,
i.e. is composed of all the pairs (v1,v2) for which the correspond-
ing parts v1,v2 ∈ V are adjacent (with respect to a threshold θadj).
Our construction follows the approach described by Mattausch et.
al [MPM∗14], who use consistently oriented fitting rectangles as
shape proxies for the parts of the scene. The use of these primitives
in our pipeline is motivated by two main arguments. First, oriented
fitting rectangles have proven to work well in practice in indoor set-
tings and on more general urban models [vLvKV11]. Second, in the

presence of large missing regions, more expressive representations
(e.g. alpha shapes [EM94]) do not ensure a better approximation
of the actual features (see Fig. 2).

3.2. Detection of Structural Paths

To apply reasoning to the adjacency graph, we use the observa-
tion that an indoor environment is composed of three main struc-
tural elements, namely ceilings, walls and floor, which are arranged
from top to bottom in a consistent fashion, i.e. ceilings (on top) un-
load their weight onto the floor (bottom), typically transitioning
through walls. Furthermore we introduce the concept of structural
paths in the adjacency graph Gadj. A structural path is a sequence
WS = (v1, v2, . . . , vn−1, vn ), where vi ∈ Gad j , v1 corresponds to
a rectangle in the ceiling, vn to a rectangle on the floor and every
edge (vi, vi+1 ) is an edge in Gadj that is structurally valid. We con-
sider an edge (vi, vi+1 ) to be structurally valid if the two fitting
rectangles ri and ri+1 corresponding to the nodes vi and vi+1 ex-
press a transition that is coherent with the top-bottom arrangement
described above. Valid transitions are encoded using a set of six
spatial configurations, denoted as structural patterns and depicted
in Fig. 3. Patterns 1-4 capture the transition from the ceiling down-
wards to the floor (patterns TopDown1 and TopDown2), including
the special case of large alcoves that jut out of the main room struc-
ture (Alcove1 and Alcove2). Patterns 5-6 (Side1 and Side2) encode
lateral adjacencies between walls. In particular, the mutual rectan-
gle positions for these patterns can be described as follows.

1. TopDown1: at least one of ri and ri+1 is not vertical and there
exists a pair of edges s′i , s′i+1 that are spatially close (i.e. their
minimum distance is < θadj/2) and parallel to a same line; addi-
tionally, the projections of s′i and s′i+1 onto said line overlap;

2. TopDown2: ri rests on ri+1, i.e., the top edge of ri+1 lies on the
plane of ri and its projection onto such plane is contained in ri;

3. Alcove1: the top edge of ri+1 (any if ri+1 is horizontal) lies on
ri and the other edge lies on the positive half space of Πi;

4. Alcove2: the bottom edge and either the left or the right edge of
ri+1 intersect ri;

5. Side1: ri and ri+1 are both non-horizontal and have the same
vertical slant (i.e., are either both vertical or are parallel); addi-
tionally, the left edge of ri and the right edge of ri+1 (or vice-
versa, the left edge of ri+1 and the right edge of ri) are adjacent
in the sense of TopDown1;

6. Side2: the intersection of the planes of ri and ri+1 crosses the
left edge of ri and the right edge of ri+1 (or vice-versa, the left
edge of ri+1 and the right edge of ri).

To find structural paths in the contact graph, we apply the fol-
lowing base algorithm. For every ceiling node vceil (corresponding
to a rectangle on a ceiling) we perform a region growing in Gadj,
using vceil as starting node and only expanding along edges that are
structurally valid in the sense of patterns 1-4. If one or more ground
patches are reached, we backtrack from each of them until vceil to
extract the structural paths found. Fig.4 shows a typical structural
path that reaches the floor from a ceiling node, crossing edges that
conform to TopDown1. In the same picture, the fixtures on the ceil-
ing are not connected to the floor and are thus marked as clutter.
Similarly, the cabinet represents an orthogonal extrusion from the

To appear at Pacific Graphics (2016) and in Computer Graphics Forum



4 C. Mura, O. Mattausch, R. Pajarola / Piecewise-planar Reconstruction of Multi-room Interiors with Arbitrary Walls Arrangements

Figure 3: The six structural patterns for pairs of neighboring fitting rectangles that are used in our structural region growing algorithm.

vfloor

vceil

v1

v3

v2

Figure 4: Node v1 belongs to a structural path ((vceil, v1, vfloor ),
in green) in the adjacency graph and is therefore marked as per-
manent. Nodes v2 and v3, reachable from the ceiling but not on a
valid path to the floor, are classified as clutter.

nearby wall and does not represent structural support for the ceiling
elements (TopDown1-2), hence it is not part of any structural path.

While this procedure works well when the whole extent of the
structures of interest is visible, in practice furniture placed along
the line of sight of the acquisition device often projects large shad-
ows onto the scene, especially onto the lower parts of the walls.
This means that the nodes in Gadj corresponding to such walls may
have no edge connecting them to the floor. We therefore perform a
second selection step, starting the region growing from the struc-
tural patches found in the first pass and considering the lateral ad-
jacencies of Side1 and Side2 (see Fig. 5). Note that objects like
cupboards and cabinets (see also Fig. 4) are not wrongly added to
a structural path by the side relations, as they do not follow a se-
quence of side-based adjacencies between structural elements (e.g.
walls), but rather constitute blocks that protrude out of them.

The result of this algorithm is a set of oriented fitting rectan-
glesRstruct corresponding to the detected structural components of
the environment. As shown in Fig. 6, our approach is highly effec-
tive in separating permanent structures from clutter. In many cases
(marked by the red circles), the method of Mura et al. [MMJV∗14]
wrongly classifies clutter and artifacts as permanent components or
results in over-segmented primitives. Note that the exact shape of
the rooms is recovered in a final step based on energy minimiza-
tion; hence it is justified to perform a first, non globally-optimal
pruning, as it greatly simplifies the problem for subsequent stages
while a globally correct final reconstruction can still be recovered.
An error analysis with respect to noise and changes in the adjacency
graph is given in Fig. 12 and 13, respectively.

Detecting floor/ceiling rectangles. Horizontal floors and ceil-
ings are detected by analyzing the z-histogram of the scene [TZ12,

vfloor

vceil

v1

(a)

v1
v2

v3

vfloor

vceil

(b)

Figure 5: The patch corresponding to node v1 is adjacent to a ceil-
ing patch, but, due to viewpoint occlusions, it is not connected to the
floor (a). However, using structural pattern Side1, v1 can correctly
be classified as structural, as it is connected by a lateral adjacency
path between v2 and v3 that both belong to a structural path (b).

OLA14]; however, since we also target buildings with non-
horizontal roofs, we also analyze the rectangles that are non-
horizontal. A non-horizontal rectangle is marked as belonging to
a ceiling if the vertical projection of all the rectangles above it do
not intersect it; here a rectangle ri is considered to be above rectan-
gle r j if the vertices if ri lie in the upper half-space defined by the
plane of r j.

Interactive refinement. In case that errors in the classification
(e.g., due to ambiguous configurations that stem from missing data)
lead to unwanted final results, we provide an option to use interac-
tive operations to correct them and to enforce specific completions
of occluded regions. Unlike full-fledged semi-automatic modeling
pipelines [ASF∗13], the number of primitives affected by manual
refinements is assumed to be negligible compared to the model
complexity. For instance, only 21 rectangles are altered in the re-
construction of ‘Building D’ (Tab. 1), representing only 4% of the
total number of rectangles discovered in the model. Throughout this
process, all fitting rectangles are shown in color-coding according
to their current label (permanent structures are visualized in green,
clutter is shown in red). The user can intervene using the following
three operations (shown in Fig. 7).

(a) Label flip. Selecting a rectangle and inverting its label. A rect-
angle marked as permanent becomes clutter and vice-versa.

(b) Extension. Sketching a line that starts from one permanent rect-
angle and ends on another green rectangle. The two rectangles are
extended to the intersection of their planes.

(c) Orthogonal extension. Sketching a line that starts from one
permanent rectangle ri and ends on another green rectangle ri+1,
crossing a boundary line segment s′i of ri. A new rectangle orthog-
onal to the plane of ri and extending from s′i until the plane of ri+1
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(a) (b) (c)

Figure 6: Selection of permanent components by a state-of-the art
method [MMJV∗14] (b) and our new approach based on structural
paths in 3D (c), which produces comparable or better results on a
2.5D dataset (a) targeted to the former approach. The result shown
in (c) was obtained without any user refinement.

(a) (b) (c)

Figure 7: Examples of interactive refinement of the automatic re-
sults: label flip (a); extension (b); orthogonal extension (c).

is added as a new permanent component, while ri+1 is extended
until reaching such extension.

4. Volumetric Segmentation

In this second stage, we use the detected structures to build a space
partitioning of the scene and then reconstruct the individual rooms
as unions of volumetric sub-regions of this structure. We can iden-
tify three main steps in the volumetric segmentation process: (i)
construction of the space partitioning, (ii) detection of the individ-
ual rooms, and (iii) reconstruction of the detected rooms.

4.1. Space Partitioning

As a preprocess, the dominant planes of the building are detected
by clustering the permanent rectangles according to their normal di-
rection and to their position along that direction, using the approach
of Mura et al. [MMJV∗14]. For each cluster obtained, we perform
an additional least-median of squares (LMS) fit on the points asso-
ciated to its rectangles to avoid averaging effects due to the cluster-
ing procedure. A BSP tree of the scene is now built by intersecting
its bounding box (expanded by a small factor) with all dominant
planes. The set of polyhedral cells C associated to the leaves of
this tree corresponds to the partitioning of the space induced by the
dominant planes. We assemble such cells according to their adja-
cency relationships N = {(c,c′)|c,c′ ∈ C ∧ c,c′are adjacent} into

a 3D cell complex (C,N ). An adjacency (c,c′) ∈ N corresponds
to a polygonal facet fc,c′ shared by the polyhedra corresponding
to c and c′. During the construction of the complex we associate
to each such facet the ID of the dominant plane that generates it
and the coverage of the facet (denoted by cov( fc,c′)), which cor-
responds to the fraction of its area covered by scanned points. It
is worth mentioning that the coverage of a facet can be used as
a measure of dissimilarity between its two adjacent cells, since a
facet with high coverage is likely to lie on the surface of a perma-
nent structure (e.g. a wall) and thus separate cells that belong to
different environments.

4.2. Room Detection

In our pipeline, the shape of each room is obtained as the volumet-
ric union of a specific subset of the cells of the complex (C,N ). In
fact, the reconstruction is cast as a multi-label optimization prob-
lem [BK04], in which each cell is assigned one out of Nlabels =
Nrooms + 1 labels, that is, Nrooms labels for the rooms, plus an ad-
ditional one for the outer space and the space occupied by walls.
To reliably estimate Nrooms, we adopted the work of DiBenedetto
et al. [DBGBR∗14]. In their method, aimed at generating panora-
mas for image-based rendering, multiple view probes are clustered
using a Markov cluster algorithm (MCL) [VD08] driven by the
amount of visible surface overlap. We adapt their approach by con-
sidering as view probes the polyhedral cells Cvp = {cvp

1 , . . . ,cvp
nvp }

of the complex that contain a scan position. As stated in Sec. 3, we
assume that every room contains at least one scan position, which
implies that the number of rooms in the environment can be ob-
tained by correctly clustering the set Cvp.

In the absence of an exact mathematical definition of a
room [TZ14], we define it as a sub-space of an environment mostly
separated from the rest of the space by permanent components.
From this it follows that two locations placed in different rooms
should see very different parts of the scene, while the visibility
from positions within the same room is very similar. We define the
amount of visible surface overlap between two cells in terms of the
visible structural fitting rectangles Rstruct (see Sec. 3.2). In partic-
ular, let visr

i denote the visible area of r ∈ Rstruct as seen from cell
ci and let overlapr(ci,c j) be the visibility overlap between cells ci
and c j relative to rectangle r, defined as:

overlapr(ci,c j) =
max(visr

i ,visr
j)−min(visr

i ,visr
j)

max(visr
i ,visr

j)
(1)

We then define the visibility overlap overlap(ci,c j) between the
viewpoint cells ci and c j as follows:

overlap(ci,c j) =
∑r∈Rstruct

wr
i, j ·overlapr(ci,c j)

∑r∈Rstruct
wr

i, j
(2)

Here wr
i, j is a term that balances the importance of each rectangle

taking into account all rectangles as seen from every viewpoint cell:

wr
i, j =

max(visr
i ,visr

j)

maxr∈Rstruct,i=1...nvp visr
i

(3)

Given this definition of visibility overlap, we construct a weighted
graph Gvp that contains one node ni for every viewpoint cell cvp

i .
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This graph is undirected and complete; each edge (ni,n j) is as-
signed the weight g(overlap(cvp

i ,cvp
j )), where g(x) is a monoton-

ically increasing concave function that suppresses the contribution
of low values. We defined it as g(x) = 1− e−((1−x)/0.5)2

, as this
function proved to work well in all our test cases.

Applying the Markov clustering [VD08] to Gvp yields a set of
clusters Γ = {Γ1, . . . ,ΓNrooms}, grouping the viewpoint cells accord-
ing to their visibility overlap. The algorithm automatically selects
the number of room clusters, which, thanks to the similarity mea-
sure chosen, corresponds to the number of rooms Nrooms of the
environment. It is worth stressing that this clustering step is only
applied to the cells that contain a viewpoint (the viewpoint cells).
While this process could be applied to all cells in C to obtain the
shapes of the rooms, the resulting reconstruction would only be
based on visibility information and lack geometric and structural
regularity. For this reason, we extract the final room models using
a more expressive multi-label energy minimization approach.

4.3. Room Reconstruction

The previous steps of the pipeline yield a polyhedral cell complex
(C,N ) and Nrooms clusters Γ1, . . . ,ΓNrooms , each corresponding to
a room of the environment and containing the viewpoint cells lo-
cated inside that room. In this final step, we assign each polyhedral
cell of the complex one label from the set L= {l1, . . . , lNrooms , lout},
which includes one label for each room plus the additional label
lout for the outer space. The problem can be modeled naturally as
a multi-label Markov random field (MRF) [BVZ01]; in particular,
we seek the optimal label assignment L∗ = { L∗c | L∗c ∈ L , c ∈ C }
that minimizes an energy function of this kind:

Elabel(L) = Edata(L)+Esmooth(L) . (4)

These two terms (denoted in the literature as data and smoothness
terms) correspond to the energy associated, respectively, to an ini-
tial, coarse labeling of the cells and to the coherency of the label
assignments to pairs of adjacent cells.

Data term. Edata consists of a sum of unary functions, each rep-
resenting a penalty for assigning label Lc ∈ L to a cell c ∈ C:

Edata(L) = ∑
c∈C

Dc(Lc) (5)

To derive the data terms, we treat the viewpoint cells c′ ∈ Γi of a
room cluster Γi as representatives of the visibility for that room;
we then compute the penalty for assigning a label li to any cell
c in terms of the visibility overlap with the viewpoint cells in Γi
(using Eq. 2). Since the notion of viewpoint cell does not apply to
the cluster of outer space, the penalty for labeling a cell c as lout is
defined as the fraction O(c) of the scene (as seen from the center
of c) that corresponds to empty space (i.e., not occupied by any
structural rectangle). The term Dc(Lc) can therefore be expressed
as follows:

Dc(Lc) =

{
1−maxc′∈ΓLc

overlap(c,c′) if lc 6= lout

O(c) otherwise
(6)

Smoothness term. The effect of Edata is balanced by the smooth-
ness energy Esmooth, which aims at regularizing the labeling by pe-

nalizing the assignment of different labels to adjacent cells. We ex-
press this term as a sum of four sub-terms, which enforce not only
fidelity to the measured data, but also geometric simplicity of the
resulting model, structural coherency of the rooms and separation
between rooms:

Esmooth(L) = λcov Ecov +λA EA +λG EG +λsep Esep (7)

Here the dependency of the energy sub-terms on the labeling L has
been omitted for brevity. Each of these energies are defined by a
sum of pairwise potentials involving the pairs (c,c′) ∈ N of ad-
jacent cells in the complex, and have the following general form:

E...(L) = ∑
(c,c′)∈N

V ...
c,c′(Lc,Lc′) (8)

The individual terms are defined as follows:

• Coverage term Ecov: penalizes assigning the same label to a pair
(c,c′) if the facet fc,c′ is densely covered by scanned points; its
potential is defined as follows:

V cov
c,c′ (Lc,Lc′) = 1(Lc 6= Lc′) · cov( fc,c′) (9)

where cov( fc,c′) is the coverage defined in Sec. 4.1;

• Area term EA: favors geometric simplicity by penalizing the total
area of the interface surface between two rooms; its interaction
potential is defined as:

V A
c,c′(Lc,Lc′) = 1(Lc 6= Lc′) ·area( fc,c′) (10)

where area( fc,c′) is the surface area of the facet.

• Gravity term EG: penalizes label assignments to a pair
(c,c′) that leave one cell “floating”, i.e. without a cell be-
low to sustain its weight (see Fig. 8); this condition is for-
mulated with the following potential:

V G
c,c′(Lc,Lc′) = 1(Lc 6= Lc′) · (vG ·Nc,c′) · s(c,c′,Lc,Lc′)

(11)

Nc,c0 vG

c0

c

where vG is the vector (0,0,−1),
Nc,c′ is the normal of fc,c′ and
s(c,c′,Lc,Lc′) is a function that
takes value 1 if the bottom cell in the
pair (c,c′) is labeled lout and the up-
per cell has a label 6= lout, and 0 oth-
erwise (see inset, which describes
the case s(c,c′,Lc,Lc′) = 1 );

• Room separation term Esep: enforces the presence of thick walls
between the clusters of any two rooms, by penalizing the assign-
ment of different labels to adjacent cells unless one of the two
labels is Louter; the corresponding potential is as follows:

V sep
c,c′ (Lc,Lc′) =

{
1 if Lc = Louter∨Lc′ = Louter

0 otherwise
(12)

The relative importance of these sub-terms (also with respect to the
data term) can be adjusted by varying the values of the λ in Eq. 7
in the range [0 . . .1]. Since all the pairwise potentials used satisfy
by definition the submodularity property and are semi-metrics, the
energy function of Eq. 4 can be minimized using the α− β swap

To appear at Pacific Graphics (2016) and in Computer Graphics Forum



C. Mura, O. Mattausch, R. Pajarola / Piecewise-planar Reconstruction of Multi-room Interiors with Arbitrary Walls Arrangements 7

(a) (b)

Figure 8: Our gravity term helps obtain plausible reconstructions
by favoring stable cells configurations (a), while our room separa-
tion term ensures that rooms are separated by empty space (b).

algorithm [BVZ01]. The minimum energy is associated to the op-
timal labeling L∗ and the shape of the individual rooms can be re-
constructed by volumetric union of the cells with the same label.

5. Results

We tested our pipeline on a set of 6 real-world and 2 syn-
thetic datasets of building interiors. Relevant information on all
datasets and on the reconstruction results are summarized in Tab. 1.
Our test suite includes several models from state-of-the-art meth-
ods [MMJV∗14, IYF15, OVWK16]; however, to evaluate the full
capabilities of our method, we introduced 5 new building models
that clearly violate the 2.5D and Manhattan-World assumptions.
Our models come from three different sources: high-quality ter-
restrial laser range-scanning (label LiDAR in Tab. 1); a proprietary
acquisition system based on Kinect-like cameras (label RGB-D);
software simulation of time-of-flight scanning on hand-modeled
geometry using software ray-casting (label Synth.).

Implementation. Our software is written in C++ and uses the
publicly available implementations of the MCL [VD08] and α−β

swap [BK04] algorithms. All tests were performed on a MacBook
Pro with an Intel Core i7 (2.5GHz), 16GB DDR3 RAM and an
NVIDIA GeForce GT 750M. Processing times for all models are
given in Tab. 1 and vary from about 20 seconds (for dataset ‘Cot-
tage’) to about 5 minutes (for ‘House’). The input planar seg-
mentation is obtained using a region-growing algorithm driven
by point-to-plane offset ηoff and deviation ηang from plane nor-
mal [CLP10, MMJV∗14, BdLGM14]. Both the coverage of a facet
and the visible area of a rectangle are computed using the standard
rasterization pipeline. Our pipeline depends on the following pa-
rameters. During the construction of the adjacency graph, we con-
sider two patches to be adjacent if their distance θadj is less than
20cm. The MCL clustering is used with inflation 1.1 and threshold-
ing the links with weight < 0.1. The energy minimization depends
on the weights λcov, λA, λG, λsep (see Eq. 7), that we fixed to 0.2,
0.05, 0.1 and 0.2, respectively. Finally, we set the default values
of ηoff and ηang (used in the planar segmentation) to 0.5cm and
0.975, respectively, and pruned the fitting rectangles with a diame-
ter < 20cm and a ratio between smaller and greater side < 0.001.

Comparison with state-of-the-art. We compared our approach

Figure 9: Comparison between the reconstructions obtained by our
method (MIDDLE ROW) and by previous approaches (BOTTOM).
For each method, the comparison is based on the input models
(TOP ROW) introduced in the corresponding paper.

against state-of-the-art methods using their original 2.5D interior
datasets. As shown in Fig. 9, our approach, although designed to
capture more general 3D structures, is able to process this type of
environments with comparable results to the more restrictive origi-
nal methods. In particular, the reconstruction results for ‘Office 2’
and ‘Apartment 1’ show that our approach is able to detect ceilings
of different heights without requiring any ad-hoc steps, which is not
possible with the method of Mura et al. [MMJV∗14]. Compared
to ours, the reconstruction of ‘Apartment 1’ obtained by Ikehata
and colleagues [IYF15] is richer in fine-grained geometric detail,
whereas our result only includes larger architectural features. Our
approach can correctly reconstruct environments with a high room
count like ‘Building D’ (28 rooms). The results of our room de-
tection algorithm are comparable to those of previous approaches,
with only minor differences occurring in ambiguous cases such as
wide passages between rooms and corridors.

In Fig.10, we show a direct comparison with the approach of
Mura et al. on a dataset exhibiting several features that can not be
described in 2.5D (i.e., the first floor of ‘Maisonnette’). While their
method can reconstruct an approximate floorplan, many large wall
structures, as well as entire sub-spaces (e.g. the alcove in the green
room) are lost. On the other hand, our novel method achieves a
relatively faithful reconstruction fully automatically, which can be
further improved with a few operations of our interactive refine-
ment. Note that the complete dataset with fine details highlighted
is shown in Fig. 11. We also run the 2.5D method on building mod-
els with relatively high irregularities like ‘Modern’, but the results
produced barely reflected the actual shapes of the rooms due to er-
rors in the selection of the wall candidates.

General 3D datasets. Reconstruction results for a set of more
general model are shown in Fig. 11 and in Fig. 1. All environments
are composed of multiple rooms and exhibit many slanted ceilings
and wall surfaces, which makes them well-suited to evaluate the
capabilities of our pipeline. ‘Cottage’ consists of two hotel rooms
(each with a bedroom, a bathroom and a small passage) and a corri-
dor in relatively regular arrangements. ‘Penthouse’ is a more chal-
lenging model, with less regular room shapes, more structural de-
tail (e.g. window alcoves) and high levels of clutter. In spite of this,
our method allows to reconstruct an accurate model of its rooms.
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Dataset #Points #Scans #Rooms Type Time (step1/step2) #Rect. (perm./clut.) #Alt. #Planes #BSP cells Figs.

Office 2 27.8M 10 6 LiDAR 79.9s (29.6/50.3) 629 (121/508) 25 53 4958 9

Apartment 1 7.2M 16 5 RGB-D 177.5s (6.3/171.2) 377 (143/234) 27 71 9634 9

Building D 63.1M 36 28 LiDAR 304.0s (99.8/204.2) 501 (252/249) 21 68 8317 9

Penthouse 22.2M 8 5 LiDAR 66.5s (16.0/50.5) 332 (93/239) 17 51 7188 1,8(b)

Maisonnette 19.4M 7 5 LiDAR 112.9s (20.8/92.1) 296 (115/181) 8 63 12202 8(a),10,11,14

Cottage 12.4M 7 7 LiDAR 19.3s (10.2/9.1) 159 (51/108) 6 29 836 11

House 52.8M 19 9 Synth. 317.7s (55.6/262.1) 519 (153/336) 13 66 11784 11

Modern 22.2M 8 3 Synth. 70.6s (22.8/47.8) 266 (57/209) 0 49 5717 11, 12, 13

Table 1: Information on the input data (no. points, no. scans, data source) and on the environment (no. rooms), overall computation time
(in brackets: partial times for step 1/step 2); no. of fitting rectangles extracted automatically (in brackets: structural rectangles/clutter
rectangles); no. of rectangles altered in the refinement; no. of dominant planes; size of the BSP complex (i.e., no. of cells).

Mura et al. [MMJV*14]

Ours (no refinement) Ours (with refinement)

Input point clouds

Figure 10: Comparison between the results of Mura et
al. [MMJV∗14] and those produced by our method without and
with user intervention for a model with several slanted surfaces.

Datasets ‘Maisonnette’ and ‘House’ represent more complex envi-
ronments with multiple stories. ‘House’ (synthetic dataset) corre-
sponds to a 3-story house containing many rooms and interior de-
tails (as shown in the inset). ‘Maisonnette’ contains many structures
that violate both the Manhattan-World and the 2.5D assumption, it
exhibits irregular room shapes and is rich in geometric detail. In
particular, the large window alcove in the green room has a roof
with several different orientations; as shown in the inset, these are
preserved in the final reconstruction. The ability to capture fine-
grained orientations is also demonstrated by ‘Modern’, a synthetic
dataset containing many complex wall arrangements and configu-
rations, all captured correctly in our reconstruction.

Interactive refinement. We evaluated the number of operations
and the time needed in the interactive refinement to complete a
typical model with high levels of clutter, using the first floor of
‘Maisonnette’ as shown in Fig. 10. In this case, the user interven-
tion helps reconstruct the correct boundaries for the blue room in
almost complete absence of scanned evidence for a wall surface.
We asked 1 expert and 2 novice users to complete the task. The
expert user completed the refinement in 43 seconds performing 6
operations, while the 2 novice users (who received a complete in-
troduction and training to the system) performed, respectively, 12
and 11 operations in 360 and 339 seconds. Note that the unexperi-
enced users produced results comparable to those obtained by the

expert and shown in Fig. 10. In addition to this evaluation, we report
in Tab. 1 the number of operations performed on each test model.

Rectangles classification. The first floor of ‘Maisonnette’ was
also used to evaluate the detection step (Sec. 3) in terms of precision
and recall. The values obtained, respectively 97% and 93%, show
that the approach is effective in selecting the main architectural fea-
tures of the environment. Additionally, we quantitatively compared
our classification step with that of Mura et al. [MMJV∗14] using
’Office 3’, thus complementing the visual comparison in Fig. 6. Our
method obtained a precision of 85% and a recall of 77%, whereas
their approach scored, respectively, 90% and 48%. Our lower preci-
sion value is due to false positives corresponding to spurious ceiling
rectangles caused by window reflection artifacts; as these are scat-
tered and isolated by nature, they do not affect the reconstruction.

Robustness. We analyzed the robustness of our approach by
corrupting the synthetic model ‘Modern’ with increasing levels of
noise, using the noise model of Mura et al. [MMJV∗14]. In our
first test, we varied the noise level while keeping all parameters of
our pipeline fixed; the input planar decomposition was obtained by
adapting the threshold ηoff of the region growing to the noise level
of the input dataset. As shown in Fig. 12, our method is fairly ro-
bust for noise levels σ≤ 5cm. We also evaluate the robustness with
respect to the adjacency threshold θadj used to construct the adja-
cency graph Gadj. We did this for every noise level considered, but
for σ = 1cm,2.5cm we did not detect meaningful differences with
the results in Fig. 11; we therefore show in Fig. 13 only the results
obtained at the highest noise level (σ = 5cm). Decreasing θadj from
the default value (20cm) to 10cm leads to an incorrect classifica-
tion of some structural rectangles and eventually to an erroneous
reconstruction of the blue room. For θadj = 5cm even more rectan-
gles are misclassified, resulting in the green room being attached to
the central space. It is worth noticing, however, that in this case the
adjacency threshold θadj corresponds to the noise level considered.
Besides studying the influence of σ and θadj on the final reconstruc-
tion, we analyzed how they influence the precision and recall values
for the detection of the permanent components. For σ= 1cm,2.5cm
both measures attain at 100%, whereas for σ = 5cm we obtained
a precision of 94% and a recall of 88%. The influence of Gadj is
stronger: for θadj = 20cm,10cm,5cm, the precision/recall pairs are,
respectively, 94%/88%, 96%/85%, 94%/60%.
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Cottage

Modern

Maisonnette

House

Figure 11: Input models and reconstruction results. For each dataset, we show the input point cloud (LEFT), the classification into structural
(green) and clutter (red) rectangles (MIDDLE) and the reconstructed room polyhedra (RIGHT). Insets show either details of the complexity
of the planar components or of the final reconstruction.

� = 5cm� = 1cm � = 2.5cm

Figure 12: Robustness with respect to increased measurement
noise. The progressive decrease in reconstruction accuracy is
shown by the details in the in the insets.

✓adj = 5cm✓adj = 10cm✓adj = 20cm

Figure 13: Reconstruction robustness with respect to varying ad-
jacency threshold in the graph. The model shown is ‘Modern’, cor-
rupted with gaussian noise of σ = 5cm (see Fig. 12).

6. Limitations

Most round surfaces and ceilings can be approximated well in prac-
tice by our method; nevertheless, due to the use of fitting rect-
angles and of a piecewise-planar approach, in presence of occlu-
sions we can not guarantee that non-flat surfaces are recovered
in a reliable and uniformly smooth manner (see Fig. 14). Very
high levels of clutter, as in the case of dataset ‘Penthouse’ shown
in Fig. 1, can make the reconstruction problem ill-posed. Due to
the presence of built-in bookshelves or cabinets, some boundary
walls are almost entirely missing in the scanned model (see de-
tail of ‘Maisonnette’ in Fig. 14) and can only be recovered with
user interaction. Due to the generality of building shapes that we
would like to model, some reconstruction solutions are intrinsically

(a) (b)

Figure 14: Limitations of our method. Using a piecewise-planar
approach, curved surfaces may not be smoothly approximated (a).
If a surface is almost entirely missing in the input model, the auto-
matic reconstruction can be incomplete (b).

ambiguous without additional prior information. For instance, the
chimney in Fig. 7 could be considered not to be part of the main
architectural shape of the environment, but its rectangles are de-
tected as structural by the automatic classification. User input is
needed to disambiguate these cases. The simple scheme used for
producing the input planar patches will eventually fail for very
high levels of measurement noise and could be replaced by dedi-
cated techniques [MMBM15, OLA16], which are however orthog-
onal to our work. Moreover, the use of the scan positions in the
room detection process results in two restrictions. First, a room is
detected only if it was acquired from at least one location inside it
(as in [MMJV∗14, OVWK16]). Second, if two scans correspond-
ing to the same (very large) room do not have enough overlap,
the visibility-based clustering may assign them to different clus-
ters, leading to over-segmentation. However, these issues only oc-
cur if the input scans do not cover the scene in an adequate way;
the problem did not occur in any of our real-world datasets.

7. Conclusions and Future Work

We have presented the first pipeline for architectural reconstruction
of multi-room building interiors that goes beyond the Manhattan-
World or 2.5D assumptions. Our approach allows to reconstruct
the individual room polyhedra in fairly complex 3D environments
with arbitrary wall orientations, which is not possible using exist-
ing pipelines. While more flexible in terms of the room shapes that
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can be captured, our method is still robust to clutter and missing
data and is capable of detecting separate rooms. We regard our
method to be a significant step forward towards the creation of a
flexible and effective pipeline for the scan-to-BIM problem. Nev-
ertheless, our work leaves various avenues open for future work.
Being a piecewise-linear method, our approach should be extended
to reconstruct curved surfaces in a consistent and reliable manner.
Although the structural patterns chosen work well in real-world
scenes, it would be interesting to explore a data-driven approach to
extract a larger set of configurations for the structural components.
In this context, the addition of higher-level primitives would be a
straightforward extension. Moreover, we would like to extend our
work to process efficiently very large-scale multi-story datasets, in-
vestigating new techniques for the construction of the cell complex
that allow such complexity.
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