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Figure 1: (A) Paolo model with physical hard shadows (A) and with edited shadows (B), giving him a demonic look and
changing the mood of the scene. This result was created with a few simple operations on the shadow boundaries given by the
silhouettes (C and D, drag direction indicated by arrows). Using a mesh created from the new shadow boundaries (E), a shadow
volume algorithm creates plausible shadows when changing the scene configuration (F).

Abstract
We present an algorithm for artistically modifying physically based shadows. With our tool, an artist can directly
edit the shadow boundaries in the scene in an intuitive fashion similar to freeform curve editing. Our algorithm
then makes these shadow edits consistent with respect to varying light directions and scene configurations, by cre-
ating a shadow mesh from the new silhouettes. The shadow mesh helps a modified shadow volume algorithm cast
shadows that conform to the artistic shadow boundary edits, while providing plausible interaction with dynamic
environments, including animation of both characters and light sources. Our algorithm provides significantly more
fine-grained local and direct control than previous artistic light editing methods, which makes it simple to adjust
the shadows in a scene to reach a particular effect, or to create interesting shadow shapes and shadow animations.
All cases are handled with a single intuitive interface, be it soft shadows, or (self-)shadows on arbitrary receivers.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

Various methods exist to create correct physically based
shadows, which are convenient to use as they require no
further artist input. However, for artistic purpose it is often
more important to achieve a certain effect than to maintain
physical correctness. In cinematography, for instance, shad-
ows are considered a valuable means to express a certain
mood or atmosphere, or to emphasize certain features of a
character [Bar97]. For example, a large shadow cast on an-

other character may convey dominance, or a character may
be given an air of mystery by having one half of his face cov-
ered by shadow. However, obtaining a desired result just by
properly setting up and tweaking the scene lighting might
be very difficult, as illumination has a global influence – a
small correction to a shadow might require relighting of a
large portion of the scene. Conversely, it may be equally te-
dious to create all shadow effects in the scene by hand, and
almost impossible to keep these artificial shadows consis-
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tent over an animation sequence. Inconsistencies or sudden
changes in the shadows might instantly shatter the illusion
and take someone out of a movie or game experience. Ide-
ally, we want to choose and edit individual shadows, while
everything else stays the same.

In this paper, we therefore propose a different approach,
where we 1) start from the physical (hard or soft) shadow,
2) artistically edit the physical shadows for the current scene
configuration, and 3) make the edited shadows consistent for
varying light source directions and scene configurations. A
typical editing example using our tool can be seen in Fig-
ure 1. Starting from the physical shadow (Image A), a user
can create results like the demonic shadow shape shown in
Image B. The shadows are edited by simply pulling on the
shadow boundaries represented as freeform curves (visual-
ized as colored lines in Images C and D). Editing shadows
on distant shadow receivers (C) and self shadows (D) are
handled uniformly in our framework. The main properties
of this algorithm are:

Direct and intuitive control over the shadow edits. The
artist can drag the shadow boundaries of the physically
based shadows directly in the scene, and the shadow
closely follows the user inputs.

Detailed and local control over the edits which exceeds
that of previous algorithms. To our knowledge, this is the
only method that allows changes to the topology of the
shadow (as shown, e.g., in Figure 13 where the shadow
outline of the nose is made visible).

Animation of both characters and light sources.
Plausible interaction of the generated shadows with a dy-

namic environment, e.g., when another object comes be-
tween shadow receiver and shadow caster.

A unified framework for editing self shadows, contact
shadows, and shadows cast on non-planar distant re-
ceivers, as well as soft shadows.

To our knowledge, this is the only shadow editing method
which can provide all of the listed properties simultaneously,
using a single intuitive and local editing interface. This in-
terface is suited for a casual user to quickly create interest-
ing shadow edits and animations, as well as for professional
artists to create a desired effect in an animation movie.

2. Related Work

Several indirect methods for lighting design have been pro-
posed to avoid the often tedious work of directly tweaking
the light sources to reach a particular effect. In early work,
Poulin et al. [PF92] described an algorithm where modify-
ing the highlights and shadows in the scene lead to indirect
modification of the scene lights. The algorithm of Pellacini
et al. [PTG02] allows a user to directly move shadows in the
scene, whereupon it calculates the corresponding light posi-
tion for the new shadow location. However, they do not go
beyond simple translations of the shadow.
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Figure 2: The process for finding a new handle position dur-
ing shadow boundary editing.

DeCoro et al. [DCFR07] proposed a number of opera-
tors for non-photorealistic shadow styles, including abstrac-
tion, which creates a stylized, simplified version of the orig-
inal shadow, and inflation, but they do not support direct
editing of the shadows as such. Todo et al. [TABI07] pro-
posed a method for locally tweaking the diffuse and specu-
lar term for stylized shading. Its main use is in cartoon-style
keyframe animation, where they smoothly interpolate their
shading between the frames. Since they do not deal with
shadows, our method could be used in combination with
theirs. Mitra et al. [MP09] proposed an algorithm for cre-
ating shadow art, where depending on the light direction the
created object casts multiple target shadow shapes. There is
some similarity to our algorithm, as both methods create a
shadow shape which in turn casts the desired shadow.

2.1. Editing the shadow shape

In contrast to the above methods, there are a couple of papers
which discuss direct edits to the shape of the shadow.

The method of Obert et al. [OPP10] cleverly decouples
visibility from lighting, allowing direct edits of the shadows.
Instead of a unified interface as in our method, it offers a
couple of editing tools. In terms of local and detailed ed-
its, the lattice-editing metaphor supports only coarse-grained
shadow warpings but no topology changes like our method.
Dynamic scene changes are very limited since visibility is
preprocessed. An artist can either edit in image-space (fixed
view position) or indirectly in a separate uv-space window
(more complex edits are fixed to a surface parametrization).
Also, no object interaction is supported.

The on-surface signal editing method of Ritschel et
al. [RTD∗10] does not require parametrization. It uses the
metaphor of cloth dragged over a surface for local warping
and can uniformly handle a variety of illumination effects
like caustics and shadows. This method is closest to ours in
terms of direct and local control. However, editing fine de-
tails depends heavily on the sampling resolution and requires
many control points near discontinuities, and does not permit
topology changes. An inherent drawback of this approach is
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Figure 3: Shadow volume modification during boundary editing (B,C,D), and after shadow mesh creation for animation (E, F,
G). The rendered shadows immediately reflect new user edits.

that edits are fixed to the surface, and hence does not support
object interactions nor translations.

BendyLight [KPD10] enables editing by bending the
shadow casting light rays and was later extended to global
illumination [NJS∗11]. It is related to our algorithm in the
sense that it really deforms the underlying geometry. Also, it
is the only other shadow editing method which allows both
character animation as well as object interactions. However,
the editing metaphor is neither direct nor local, since the
artist has to bend a light beam to indirectly move a shadow.
While it is an option to use per-object shadow dragging, all
presented edits are of global nature.

All of these methods are useful in their own way. Never-
theless, none of them supports as direct and detailed shadow
control as our method. They are limited to global, continu-
ous transformations, basically equivalent to stretching and
squishing parts of the surface where the shadow falls on.
The method of Nakajima et al. [NSM07] can also change
the outline of a shadow by changing the extrusion direction
of shadow volume polygons. Unfortunately this method is
rather rudimentary, as it can handle neither non-planar re-
ceivers, self shadowing, nor dynamic changes.

3. Algorithm Overview

Our algorithm displays the shadow boundaries and allows
the user to modify them in the scene directly. In order to
make this work, the main idea of our algorithm is to map
these changes back to the the silhouettes of the shadow cast-
ing object, and use the modified silhouettes to cast the shad-
ows. Since silhouettes become invalid when dynamically
modifying the scene, we create a shadow mesh that conforms
to the edited silhouettes, and can be used to create new sil-
houettes for different light or object positions. When render-
ing the shadows, we have to avoid self-shadow artifacts due
to mismatches between shadow mesh and original mesh, and
we have to make sure the shadow modifications have local
effect by combining modified and original shadows.

We use the shadow-volume algorithm [Cro77] to render
shadows, which extends the silhouette of an object with re-
spect to the light source to infinity and then determines for
each receiver point whether it is inside or outside of this

shadow volume. Whenever we mention silhouettes in this
paper, we always mean the silhouettes as seen from the po-
sition of the current light source.

The following lists the main steps of the algorithm, de-
scribed in more detailed in the subsequent sections. Figure 2
shows the details of user input and projections and Figure 3
shows the overall workflow.

Silhouette and handle generation (Figure 3 A) First, we
calculate the silhouettes of the mesh from the current light
direction (depicted as point (a) in Figure 2). To create
handles on the shadow boundaries for editing (denoted as
shadow handles), we project the silhouette vertices onto the
receiver surfaces using ray casting (point (b) in Figure 2).

Shadow boundary editing (Figure 3 B-D) The user ed-
its the shadow boundaries by dragging a shadow handle in
screen space (see Figure 2). The new handle position is used
to deform all vertices in a shadow boundary segment sim-
ilar to 2D freeform curves. Meanwhile the system interac-
tively adjusts the silhouettes, recomputes new handle posi-
tions, and uses these to compute new (modified) shadow vol-
umes to cast the desired shadows instantly in each frame.

Animation using shadow meshes (Figure 3 E) At this
point however, the shadow is only valid for the current set of
silhouettes. Even a slight change of light direction or object
transformation could lead to sudden changes in the shadow.
Hence, after mouse release, the original mesh is warped to
create a shadow mesh based on the deformed silhouette ver-
tices (shown in Image E of Figure 1). The shadow mesh is
then able to produce the edited shadow shapes while provid-
ing smooth shadow transitions when the silhouettes change.

Rendering the edited shadows (Figure 3 F,G) After each
modification of the scene, we recompute the silhouettes
based on the shadow mesh and use them to cast the desired
shadow. Notice however that a naive approach can cause
self-shadowing artifacts (i.e., the shadow mesh casts shad-
ows on the original geometry). An important part of our al-
gorithm is therefore to set up the shadow volume polygons
properly for rendering in order to minimize self-shadowing
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Figure 4: (Left) In case of shrinking a shadow boundary
(the silhouette vertex (a) moves to (f)), the shadow ray from
(f) will terminate at a backface inside the geometry. A sec-
ond ray is then cast to find the correct handle position (g).
(Right) For contact shadows (f) might intersect the receiving
surface. In this case we set (f) to (e).

artifacts due to the shadow mesh. Our solution is to interpo-
late between the original shadows at the silhouettes and the
edited shadows at the destination surface (Figure 3, G).

4. Silhouette and Handle Generation

The following two steps are required before the first shadow
editing operation (using the original mesh), and then also af-
ter dynamic changes: silhouettes are recomputed based on
the shadow mesh after each dynamic scene modification,
while shadow handles are recomputed during dragging of
the shadow boundary.

4.1. Silhouette Generation

The silhouettes are used both for calculating the shadow
boundaries for editing, and for rendering the original shad-
ows and those of the shadow mesh. However, we found that
the silhouettes normally used for shadow volume rendering,
i.e., the edges between front-facing and back-facing poly-
gons, are too cluttered to be useful for editing, which was
also pointed out by Nealen et al. [NSACO05]. Instead we
approximate the silhouettes of the underlying smooth mesh
as defined by the vertex normals n(v) [HZ00]. In particular,
silhouette vertices s are interpolated between edge vertices
vb and v f which are on opposite sides with respect to the
light position l. To get the interpolation factor α, we solve for
(1−α)n(vb) · (l− v f )+αn(vb) · (l− v f ) = 0. This method
outputs smooth silhouettes in connected loops.

4.2. Shadow Handle Creation

To be able to edit the shadows boundaries directly on the re-
ceiver surfaces, we need handles on the boundaries. There-
fore we project each silhouette vertex (point (a) in Figure 2)
onto the receiver geometry as seen from the light source.
For this purpose we cast a shadow ray from the current sil-
houette vertex position (in direction a− l) and compute the
first intersection with a receiver surface (point (b)). There

Figure 5: Our editing approach provides intuitive behavior
of the shadow with respect to close contact shadows and
highly non-planar surfaces.

are situations where the user drags a shadow handle inward
to cause a shadow to shrink. In this case the shadow ray cast
from the modified silhouette will potentially terminate inside
the shadow caster geometry and does not provide a useful
shadow handle. Therefore we always test if the intersected
polygon is backfacing, and cast a second ray starting from
the intersection point if this test is positive. This case is il-
lustrated in Figure 4. We render the shadow boundaries using
line segments between individual shadow handles. In order
to cull handles which should be hidden from the current view
(so that the user cannot accidentally select them), we utilize
hardware occlusion queries [BMH98] to test their visibility.

To provide a smooth editing experience for models with
many fine details like the Stanford Dragon (Figure 14),
where the shadow boundaries can become cluttered with
small intersecting lines, we are mostly interested in the long
silhouettes that define the main features of a model. Hence
we introduce a user-defined parameter which removes all sil-
houette loops smaller than a certain threshold (e.g., under 20
silhouette vertices). More specifically, they are displayed in
a neutral gray color, cannot be selected and do not influence
the editing as they are not taken into account as constraints
for the mesh deformation.

5. Shadow Boundary Editing

The editing process starts when the user selects an object
with the mouse, causing the system to display its shadow
boundaries. The user can drag the shadow handles directly
on the receiver surface. In the following we will first explain
how to move a 3D shadow handle responding to the user’s
2D dragging operation on the screen, and then show how we
move all vertices in a selected part of the boundary using
freeform deformations.

5.1. Dragging a Shadow Handle

The following operations are explained using the points
marked in Figure 2. The user edits the shadow boundaries
by dragging a shadow handle in screen space (from screen
position (c) to (d)). In order to compute the shadow bound-
ary positions from the user input, we first project the screen

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.



O. Mattausch & T. Igarashi &M. Wimmer / Freeform Shadow Boundary Editing

Figure 6: The user simply selects a shadow boundary, sets
two fixed end points (A), and edits the (freeform) curve in
between (B). The created shadow mesh (C) provides consis-
tency with respect to another light position (D).

space position (d) on the receiver surface (point (e)) using
ray casting. We then obtain the modified silhouette position
(f), which is a point on the light ray passing through (e) and
with the same depth as (a). An exception applies when (e)
is closer to the light than (a), which happens in the case of
close contact shadows like those cast by the feet in Figure 5.
In this case, we set the depth of (f) to that of (e) (right image
of Figure 4). The final position (g) of the new shadow han-
dle is then calculated by casting a shadow ray from the new
silhouette vertex (f) to get the intersection with the surface
where the edited shadow will finally project to. This method
gives a very intuitive behavior of how the shadow changes in
response to the user input, also in case of highly non-planar
surfaces such as in the right image of Figure 5.

The handle position (g) usually follows the mouse pointer
(d). The only exception is given by the case where another
surface blocks the visibility from (f) to (e) as shown in Fig-
ure 2, in which case the handle is placed on top of that sur-
face. Note that this is the desired behavior, because the edited
shadow will also be cast onto this surface.

5.2. Deforming the Whole Boundary

Dragging each individual shadow handle of the shadow
boundary can be tedious. Therefore we use the shadow han-
dle dragging-operation to control a freeform curve deforma-
tion process on the whole boundary. Figure 6 shows a se-
quence of the full editing process, demonstrated on the self
shadows cast by the cap on the face. In order to deform
shadow boundaries of the original shadow, we compute and
display the handles on the shadow boundary as described in
Section 4.2. The user selects two points on the boundary (the
two fixed end points of a segment), which is then highlighted
in yellow. Selecting another point on the curve uniquely de-
fines the segment of our boundary loop to be edited (red seg-
ment in Image A). The user deforms the shadow boundary
like an ordinary 2D freeform curve by dragging it with the
mouse (Image B). The three specified points (the fixed end
points and the moving point) are used as control vertices for
the deformation algorithm, and finally a shadow mesh (C) is
created from the deformed silhouettes for consistency (D).

For computing the shadow boundary deformation, we

Figure 7: Different deformation styles on the shadow bound-
aries: affine (left), similar (middle), rigid (right).

chose the moving least-squares image deformation method
by Schaefer et al. [SMW06], because it is quite fast and ver-
satile, and we are able to choose from several warping styles.
The method allows affine-, similarity-, and rigid deforma-
tions. We offer these styles in our system to provide variable
means for shadow editing (see Figure 7).

A modified shadow volume algorithm (explained in detail
in Section 7) uses the newly computed shadow handles to
immediately update the shadow volumes with respect to the
user input and render the desired shadows (Image B of Fig-
ure 3). Hence the user receives important real-time feedback
on these actions at any time.

Choosing a deformation space One question is in which
2D space the deformation should take place. Directional and
spotlights are associated with an intrinsic (orthogonal or per-
spective) frustum. For point lights, a frustum to enclose the
shadow caster can be set up automatically. If the light is al-
lowed to enter the bounding volume of a shadow caster, a
more robust solution is to automatically calculate a shadow
frustum for each silhouette loop separately. No matter what
frustum is chosen, we simply use the (x,y)-coordinates of
the silhouette vertices with respect to this frustum, keep-
ing the z-coordinate constant during deformation. This also
means that only the shadow handle actually dragged by the
user is treated as in Section 5.1, whereas the other silhouette
vertices are deformed using the freeform deformation, and
the final handle position is computed by casting a shadow
ray as in step 5 of Figure 2.

Our particular choice of deformation space has the advan-
tage that only small deformations of the caster geometry are
needed to achieve a desired shadow edit. As an alternative,
we also tried to use the deformation plane with respect to the
average orientation of each silhouette loop (to minimize dis-
tortion). However, this caused unacceptably large deforma-
tions of the geometry. Consider the case of a silhouette ori-
ented nearly parallel to the light direction, where a huge de-
formation would be needed for a tiny change in the shadow.
Note also that our choice of 2D coordinates does not restrict
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Figure 8: Sinusoidal noise function to create effects like wild
hair (left) or something more extreme (middle). Right: The
shadow mesh corresponding to the middle image.

the allowed orientations of the receiver geometry, as it only
affects the deformation of the caster geometry.

5.3. Alternative Operations on the Shadow Boundaries

While the styles defined by the moving least squares de-
formation algorithm are our main means for editing, our
paradigm of working on shadow boundaries allows more
operations that yield interesting and useful shadowing ef-
fects. For example, a sinusoidal noise function can be used
to add an offset hsin( f u) to each vertex v of the shadow
boundary, in the local normal direction of the boundary. u
is a parametrization of the shadow boundary curve (using
ui+1 = ui+ |vi+1−vi|), h the amplitude, and f the frequency
of the noise function. Central differences are used to com-
pute a tangent vector~t = vi−1− vi+1, and from that the nor-
mal direction as n = (−ty, tx)/|~t|. Figure 8 shows an appli-
cation of the noise functionality on the Paolo model.

6. Animation Using Shadow Meshes

In order to allow dynamic changes of the scene configura-
tion after the user has edited a shadow boundary, we deform
the original mesh with respect to the deformed silhouettes to
create a shadow mesh (the Image E in Figure 1). This allows
recalculating new silhouettes (for the new light or object po-
sition) that still incorporate the intent of the modifications to
the original silhouettes.

6.1. Creating the Shadow Mesh

For this, we could extend the moving least squares algorithm
that we use for shadow boundary editing to 3D. However,
this approach has some issues in 3D (e.g., having to use the
Geodesic distance metric). Instead the system solves for the
deformed shape-preserving vertex Laplacians [Sor06]. Note
that the deformation procedure is very similar to silhouette-
based editing [NSACO05], with the difference that the sil-
houette offsets are not directly controlled by the user but
calculated based on the desired shadow shape. We use cotan-
gent weights [Sor06] to handle non-uniform tessellations.

We slightly modify the original algorithm to take advan-
tage of the fact that we almost deal with a 2D problem. Also,

Figure 9: When computing the shadow mesh from the edited
boundaries (A) using standard isotropic weights, details are
lost (B). By transforming the vertices into light space and
using non-uniform weights in light direction before defor-
mation, the details are captured in the shadow (C).

we want to control the shape of cast shadow on a surface
rather than the 3D shape of the object. In particular, we want
to ensure that the influence of the deformations reaches suf-
ficiently far in the third direction (the light direction). Other-
wise some deformations might not cast the desired shadow,
as other geometry blocks the light. Therefore it is impor-
tant to treat the third direction differently: We transform the
geometry and the silhouette vertices into post-perspective
light space and apply a non-uniform scale (1.0,1.0, 1

wz
) be-

fore solving the Laplacian optimization problem (afterwards
we go back by applying the inverse transform). The factor
wz controls the influence of the deformation along the light
direction. In our experience, setting wz to a value of 2.5 en-
sures that the shadows cast by the shadow mesh are very sim-
ilar to the one specified by the user. An example where using
non-uniform weights improves the accuracy of the shadow
editing is depicted in Figure 9.

6.2. Animating the Shadow Mesh

In order for our approach to be used in interactive applica-
tions, for example to attach an edited shadow to a game char-
acter, it has to be compatible with character animation. Luck-
ily, due the versatility of the shadow mesh concept, charac-
ter animation techniques like skeletal animation can be sup-
ported in a quite straightforward fashion. In particular, we
use the fact that there is a one-to-one correspondence of the
shadow mesh vertices and the vertices of the original mesh.
Hence we simply copy the blend weights of the original ver-
tices and use the same skeleton to deform both the original
geometry as well as the shadow mesh. Note that this sim-
ple approach only works if the original pose and the pose
of the shadow mesh stay roughly the same as a result of the
edits. See Figure 16 for an example. Another possibility is
to animate the shadow mesh independently of the original
geometry while the geometry itself stays unchanged.

Dealing with larger deformations As the shadow mesh is
deformed to cast the desired shadows for the current scene
configuration, we cannot guarantee that the shadows are still
plausible if the scene configuration is very different from the
initial one where the shadow was modified. One way to solve

c© 2013 The Author(s)
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Figure 10: For large deviations from the light direction
when the shadows were edited, interpolation between the de-
formed shadow mesh and the original geometry can be used
to achieve smoothly blended shadows (bottom sequence).
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Figure 11: (Left) Edited shadow, corresponding shadow
mesh and its modified shadow volumes. (Right) Illustration
of the modified shadow volumes and case where B is not the
first intersection from s′o.

this problem is to define multiple keyframes for different
configurations. An even simpler way to avoid this problem
is to quantify the degree of change in the scene configura-
tion. For example, we can linearly blend between the origi-
nal geometry and the deformed shadow mesh depending on
the angle between the initial light direction~linitial where the
editing took place and the current one (~lcurrent ), where the
light vector is given in local object space to take relative
changes of the object to the light into account. An exam-
ple is shown in Figure 10. The falloff factor is computed
as (~linitial ·~lcurrent)

β, where β is a user-defined factor which
gives no falloff if it is set to 0.

7. Rendering the Edited Shadows

While shadow maps [Wil78] can be considered the
most popular algorithm for generating real-time shadows,
we chose to use the competing shadow volume algo-
rithm [Cro77] for rendering the edited shadows. This is be-
cause it has the required property that the volumes can be
constructed from the silhouettes. More specifically, the faces

of the volumes are extruded from the silhouette edges to-
wards infinity (away from the light position), and for hard
shadows the shadows can be efficiently rendered using the
stencil buffer [EK02].

7.1. Modified Shadow Volumes

In every frame, no matter whether the user is currently drag-
ging a shadow boundary or moving the light or an object, we
need to render shadows that respect the user’s modifications,
but don’t produce artifacts. In particular, we need to take
the following constraints into account: (1) At the shadow
caster itself, we need to avoid self shadowing artifacts, which
arise easily when the shadow boundary is enlarged. For ex-
ample, in Figure 3 E, the shadow mesh occludes the the
original mesh, thus casts undesirable shadow on it. Thus,
the modified shadow volume should be close to the original
shadow volume near the shadow caster. (2) At the shadow re-
ceiver, the shadow volume should meet the modified shadow
boundary. (3) Behind the shadow receiver, the shadow vol-
ume should continue without causing artifacts. This means
that it should be extruded along the original light direction.

Figure 11 visualizes the process. As input to the render-
ing, for a single shadow volume we have the modified sil-
houette sm created either from the shadow mesh or during a
dragging operation, and the corresponding boundary handle
curve B where the shadow should land. We also need a sil-
houette loop so close to the original mesh. While we could
compute so from the current light position using the original
mesh, this would produce a silhouette with a different num-
ber of vertices not matching sm. Instead, we calculate so by
mapping back the modified silhouette loop sm to the original
surface. This is done by calculating the silhouette vertex po-
sitions so on the original mesh using the same vertex indices
as for calculating sm.

In order to respect the three constraints mentioned above,
we create a modified shadow volume in three parts to blend
between the original shadow volumes and the modified ones:
(1) To make sure we initially avoid any self-shadow arti-
fact, we extrude so a small distance ε along the original
light direction, leading to a second silhouette loop s′o. (2)
We connect s′o with B, thus interpolating between the origi-
nal shadow volume and the modified one. (3) We extrude B
along the original light direction to infinity. The distance ε

is calculated as a small percentage of the distance between a
vertex on so and the corresponding vertex on B.

While this produces plausible shadows matching the three
constraints in the majority of cases, there is a realistic chance
that the modified shadow volume meets the receiver surface
before B, violating constraint (2). For example, consider a
situation where a dune intersects the line-of-sight between
B on the receiving terrain and the silhouette vertex s′o (Fig-
ure 11, right). In this case, the first surface intersection is
with the surface of the dune, and can be detected by slightly
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modifying step (2). In particular, an additional ray is cast
from each vertex s′o to the corresponding vertex on B, and a
possible new intersection is then substituted in B.

7.2. Soft Shadows

This section explains how to extend the method to the
editing of soft shadows. Soft shadows could theoreti-
cally be created by multisampling (creating a multitude of
slightly offset shadow volumes and blending), but this brute-
force approach would be infeasible with respect to inter-
active editing. Instead we chose a variation of Penumbra
Wegdes [AAM03], because that algorithm is sufficiently fast
to allow interactive editing. In the original Penumbra Wedge
algorithm, a so-called penumbra wedge is computed for each
silhouette edge, which conservatively bounds the influence
region of this edge with respect to the penumbra compu-
tation. When a receiver fragment lies within a penumbra
wedge, the soft shadow term is computed as follows: the
silhouette edge generating that wedge is projected onto the
light source (with the fragment position as center of projec-
tion), and then extended away from the center of the light
source. The covered area on the light source gives the per-
centage of occlusion of the corresponding penumbra volume
(Figure 12, right). The hard shadow volume is used to sepa-
rate the volume of those shading points where this percent-
age has to be added to the shadow term from those shading
points where it has to be subtracted.

Luckily the bulk of the algorithm does not change when
used in combination with our modified shadow volumes.
We just have to account for the fact that the modified
shadow volumes blend between the original geometry and
the shadow mesh. As depicted in Figure 12, the key for cor-
rect softness is to notice that the projection of a silhouette
edge should always intersect the light source center if the
point lies on a hard shadow volume boundary bs extruded
from this edge. We use the distance d to the light source to
compute an interpolated silhouette vertex position si which
fulfills this requirement, and is then used as input to the
Penumbra Wedge algorithm. In particular, this method lin-
early interpolates the silhouette vertex between original and
modified silhouette when the fragment lies between caster
and receiver position:

si =


so, if d(p)< d(s′o)
sm, if d(p)> d(B)

so +(sm− so)
d(x)−d(s′o)

d(B)−d(s′o))
, else.

p is the current point to be shaded, s′o is the starting point of
the blended shadow volume, and B the end point. Hence for
receiver point p′′ in Figure 12, which is farther away than in-
tersection point B, just the modified silhouette sm is used as
input to the Penumbra Wedge algorithm. The receiver point
p uses the same interpolated silhouette si as p′ instead, since
they are at the same distance from the light source. In par-

so

s'o

p

sm

B
wedge

si

light

p''

p'
bs

light

si1

si2

Figure 12: Soft shadow volumes: (Left) Penumbra wedges
are centered around an interpolated silhouette edge si.
(Right) The penumbra volumes induced by an edge are pro-
jected onto the light source to compute the percentage of
occlusion for receiver points p, p′, and p′′ inside the wedge.

Model tris orig hard soft smesh
Paolo 30,5K 4.5ms 20ms 32ms 0.2s
Bunny 70K 9ms 32ms 38ms 1.01s
Dragon 100K 19ms 101ms 123ms 1.28s

Table 1: Typical timings for different models: The baseline
using stencil shadow volume rendering (orig), editing and
rendering hard shadows (hard), editing and rendering soft
shadows (soft), and shadow mesh creation (smesh).

ticular, p′ lies at the hard shadow boundary and the projec-
tion of its silhouette edge onto the light source correctly in-
tersects the light source center. Note that a point on a hard
shadow boundary always correctly gets 50% coverage. Also,
the shadow handles still coincide with hard shadow bound-
aries, and hence the editing framework stays the same.

8. Results

All results were generated with an Intel Core i7-3770K CPU
(using a single core) and a NVIDIA GTX 580 GPU, using a
deferred shading rendering pipeline with a render target res-
olution of 1024× 768. For ray casting the shadow handles

Figure 13: Editing sequence where Paolo’s nose is empha-
sized, so that it is lit and at the same time visible in the
shadow (hereby changing the shadow topology).
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Figure 14: The same interface is used for soft shadow edit-
ing: like pronouncing tusks, trunk, and ear of the elephant
and the mouth of the dragon (note the topology changes).

Figure 15: (Left) Result created with only 4 clicks. (Right)
Same edit under changed light configuration.

we employ the flexible PBRT framework [PH10]. A non-
planar terrain is used in most of our results in order to un-
derline the fact that a planar receiver surface is not required
for our method (as opposed to Nakajima et al. [NSM07]).

Performance Table 1 shows algorithm timings for 3 dif-
ferent models, the Paolo model, the Bunny model, and the
Dragon model. The considerable difference to the timings
with the original shadow volumes stem mostly from the fact
that (unoptimized) ray casting is used to determine the next
surface, and partly from the fact that our modified shadow
volumes are more complex and require processing of two
silhouettes. As the number of rays cast is typically quite low
(it corresponds to the number of silhouette vertices), the ray
casting overhead should be significantly reduced in an opti-
mized implementation. The performance drop in the Dragon
scene can be explained by the more complex silhouettes.
Shadow mesh creation takes longer but is only invoked after
a complete dragging operation (mouse release) and is there-
fore not bothering the user.

Editing examples Figure 13 shows an editing sequence
where we emphasize Paolo’s nose by making it lit and its sil-
houettes being reflected in the shadow boundaries. Note that
this combined effect is almost impossible to achieve by just

Figure 16: By animating the shadow mesh with the same
skeleton and using the same blend weights as the original
geometry, the edited shadow can be animated.

Figure 17: Large edits in cases where the caster is close
to the receiver are a problem since the geometry gets very
distorted. While the distortion in the middle image is still
fine, it becomes too much and artifacts follow (right image).

changing the light direction. We believe that a similar de-
gree of control over the shadow topology cannot be reached
by approaches which not operate on the shadow boundaries.
Results like the Bunny ears in Figure 15 can be created easily
with only 4 actions in our system (dragging the ear and us-
ing the noise function to create the feathers). It can further be
seen that the shadow remains plausible when lit from a dif-
ferent direction. Examples for soft shadow editing are shown
in Figure 14, where interactive framerates are still possible
for editing fairly complex models like the Dragon.

Animation example Once we finish editing a shadow and
finalize it by creating the shadow mesh, it can be used as
the shadow of an animated character (see Figure 16). We
also enlarged the fists to demonstrate that the edited parts
of the mesh can be moved. With surface deformation meth-
ods [OPP10, RTD∗10], such edits would be bound to the re-
ceiving surface and not move with the shadow casting object.

9. Discussion and Limitations

As an inherent problem when dealing with edits that are
not physical, no guarantee can be given that the system be-
haves as desired in all cases. The shadow volume blending
provides a compromise between avoiding self shadows and
plausible object interaction which works well in practice. A
failure case can be seen in Figure 17, where the desired edit
cannot be completed by our method because it is too dif-
ferent from the physical shadow. The level of control one
can exert on the shadow boundary currently depends on the
tessellation level of the shadow caster. Methods have been

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.



O. Mattausch & T. Igarashi &M. Wimmer / Freeform Shadow Boundary Editing

proposed which can adaptively refine coarse shadow bound-
aries [MSWI12]. However, to make those changes perma-
nent would also require remeshing of the shadow mesh.

While we did not conduct a formal user study, we pre-
sented our system in the R&D department of a major
Japanese Anime Studio. The feedback was very positive,
such as that the method could be useful in an Anime-style
production pipeline, where shadows are frequently used for
artistic purposes.

Dependence on shadow volumes Since we exploit some
properties of the shadow-volume algorithm which are not
shared by shadow mapping, it would be hard to use shadow
mapping. As an alternative, we plan to adapt a method which
solves the known shadow-volume issues with alpha mapping
and robustness [SOA11]. For production rendering, it would
be straightforward to replace shadow volumes with shadow
ray tracing. On the other hand, we believe that for potential
application scenarios (for example, editing the shadows of a
couple of objects in a medium-sized scene), shadow volumes
should work fine and not run into performance issues. To
avoid explicit ray casting, the ray queries could be replaced
by capturing and querying a depth map from the light source
after some modifications of the volume construction.

10. Conclusions

We proposed a novel method for artistic shadow editing
based on modifying the physical shadow boundaries on the
receiver surface. The main strength of this algorithm is the
intuitive interface for the manipulation of shadow bound-
aries, which handles hard and soft shadows on any kind of
receiver geometry, is easily understandable and allows both
fine grained shadow adjustments as well as large shadow de-
formations. Through the introduction of shadow meshes, the
modified shadows can be plausibly used in interactive appli-
cations and with animated characters and light sources.
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