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Abstract

Visibility computations are essential operations in computer graphics, which
are required for rendering acceleration in the form of visibility culling, as well
as for computing realistic lighting. Visibility culling, which is the main focus of
this thesis, aims to provide output sensitivity by sending only visible primitives to
the hardware. Regardless of the rapid development of graphics hardware, it is of
crucial importance for many applications like game development or architectural
design, as the demands on the hardware regarding scene complexity increase ac-
cordingly. Solving the visibility problem has been an important research topic for
many years, and countless methods have been proposed. Interestingly, there are
still open research problems up to this day, and many algorithms are either imprac-
tical or only usable for specific scene configurations, preventing their widespread
use. Visibility culling algorithms can be separated into algorithms for visibility

preprocessing and online occlusion culling. Visibility computations are also re-
quired to solve complex lighting interactions in the scene, ranging from soft and
hard shadows to ambient occlusion and full fledged global illumination. It is a big
challenge to answer hundreds or thousands of visibility queries within a fraction
of a second in order to reach real-time frame rates, which is one goal that we want
to achieve in this thesis.

The contribution of this thesis are four novel algorithms that provide solutions
for efficient visibility interactions in order to achieve high-quality output-sensitive
real-time rendering, and are general in the sense that they work with any kind of
3D scene configuration. First we present two methods dealing with the issue of
automatically partitioning view space and object space into useful entities that are
optimal for the subsequent visibility computations. Amazingly, this problem area
was mostly ignored despite its importance, and view cells are mostly tweaked by
hand in practice in order to reach optimal performance – a very time consuming
task. The first algorithm specifically deals with the creation of an optimal view
space partition into view cells using a cost heuristics and sparse visibility sam-

pling. The second algorithm extends this approach to optimize both view space
subdivision and object space subdivision simultaneously. Next we present a hi-
erarchical online culling algorithm that eliminates most limitations of previous



approaches, and is rendering engine friendly in the sense that it allows easy in-
tegration and efficient material sorting. It reduces the main problem of previous
algorithms – the overhead due to many costly state changes and redundant hard-
ware occlusion queries – to a minimum, obtaining up to three times speedup over
previous work. At last we present an ambient occlusion algorithm which works
in screen space, and show that high-quality shading with effectively hundreds of
samples per pixel is possible in real time for both static and dynamic scenes by
utilizing temporal coherence to reuse samples from previous frames.



Kurzfassung

Sichtbarkeitsberechnungen sind essentielle Verfahren im Bereich der Com-
putergrafik, notwendig für verschnellerte Darstellung in der Form von Visibil-
ity Culling, wie auch für realistische Beleuchtung. Visibility Culling, das den
Hauptfokus dieser Arbeit darstellt, ist eine Technik die Ouput-Sensitivität erre-
ichen will, indem nur die sichtbaren Primitive zur Grafikkarte gesandt werden.
Trotz der rasanten Entwicklung der Grafikkarten ist Visibility Culling von großer
Bedeutung für viele Applikationen, wie Spieleprogrammierung oder Architektur-
Design, weil auch die Szenekomplexität entsprechend anwächst. Das Lösen des
Sichtbarkeitsproblems war über viele Jahre hinweg ein wichtiges Thema, und un-
zählige Methoden wurden vorgeschlagen. Interessanterweise gibt es trotzdem im-
mer noch offene Probleme wissenschaftlicher Art, und viele Algorithmen sind
entweder unpraktisch oder nur verwendbar für bestimmte Szenenkonfigurationen,
wodurch ihre weitläufige Verbreitung verhindert wurde. Sichtbarkeitsberechnun-
gen werden auch benötigt um komplexe Lichtinteraktionen in der Szene zu lösen,
von weichen und harten Schatten bis zu Ambient Occlusion und voller Globalen
Beleuchtung. Es ist eine riesige Herausforderung, hunderte bis tausende Visibil-
ityanfragen im Bruchteil einer Sekunde zu beantworten um Echtzeit-Laufzeiten
zu erreichen. Jenes zu schaffen ist ein Ziel dieser Arbeit.

Der Beitrag dieser Arbeit sind vier neue Algorithmen, die Lösungen für ef-
fiziente Sichtbarkeits-Interaktionen anbieten um Ausgabe-sensitive Echtzeitdarstel-
lung in hoher Qualität zu erreichen, und generell sind im Sinne daß sie mit jeder
Art von 3D Szenenkonfiguration funktionieren. Als erstes präsentieren wir zwei
Methoden, die sich mit dem Problem beschäftigen, eine automatische Aufteilun-
gen des Sichtraums beziehungsweise Objektraums in sinnvolle Entitäten zu erzeu-
gen, die optimal ist für das nachfolgende Rendering. Interessanterweise wurde
dieses Problem trotz seiner Wichtigkeit fast ignoriert, und Sichtzellen werden
in der Praxis meistens manuell angepaßt, um optimale Geschwindigkeit zu erre-
ichen - eine sehr zeitaufwendige Tätigkeit. Der erste Algorithmus beschäftigt sich
speziell mit der Erzeugung einer optimalen Sichtraum-Aufteilung in Sichtzellen
unter Benutzung von einer Kostenheuristik und spärlicher Abtastung. Der zweite
Algorithmus erweitert diesen Ansatz, um eine gleichzeitige Optimierung sowohl



vom Sicht- als auch vom Objektraum durchzuführen. Danach präsentieren wir
einen Algorithmus, der hierarchisches Occlusion Culling zur Laufzeit ohne die
Limitierungen von früheren Methoden ausführt, und sich gut in eine Rendering
Engine einpaßt im Sinne daß er leicht zu integrieren ist und effizientes Material-
Sortieren erlaubt. Der Algorithmus reduziert das Hauptproblem von den Vorgänger-
methoden - nämlich die Mehrkosten des Algorithmus durch viele teure Statuswech-
sel auf der Hardware und durch redundante hardware-basierte Sichtbarkeitsanfra-
gen - auf ein Minimum. Als letztes präsentieren wir einen Ambient Occlusion
Algorithmus im Bildschirmraum, und zeigen daß unter Ausnutzung von zeitlicher
Koherenz Schattieren in hoher Qualität mit effektiv hunderten von Abtastungen
pro Pixel sowohl für statische als auch für dynamische Szenen in Echtzeit möglich
ist, indem man Resultate von alten Frames wiederverwendet.
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The true mystery of the world

is the visible, not the invisible.

Oscar Wilde 1
Introduction

The topic of this thesis are algorithms for visibility computations, both as a pre-
process and online, that are general and useable in any type of 3D environment,
and enable us to achieve real-time frame rates with the best possible image qual-
ity. The most intuitive and well-known application of visibility computations is
the removal of geometry hidden from a view point in order to accelerate rendering.
This is the main focus of this thesis, but we will also investigate quantitative visi-
bility computations for high-quality shading, with a focus on the popular ambient
occlusion method. Our algorithms are designed for standard consumer graphics
hardware using APIs like OpenGL or Direct3D.

In this chapter we will first give an outline of our problem domain and some
basic definitions. We discuss the motivations behind our research on visibility
problems, and the applications and relevance of visibility computations for the
acceleration of real-time rendering and for realistic illumination. At last we state
the main contributions of this thesis.

1.1 Motivation

Real-time rendering is the art of rendering graphics in the best possible quality
within 60 frames per second. Real-time rendering is essential for interactive ap-
plications – anything less can lead to side effects like dropped frames or delayed
control, which seriously disturb the perceived sensation. Over the years real-time
graphics has evolved tremendously – thanks to better graphics hardware, more de-
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Chapter 1. Introduction

Figure 1.1: Evolution of the model complexity over a period of only a few years:
The Vienna model (1M triangles), the Powerplant (12M triangles), and the Boeing
model (350M triangles).

tailed models, and better techniques, while the challenges to researchers and de-
velopers become more and more sophisticated. Modern high-profile games stun
their audience with better and better image quality in real time, and there is a
fierce competition over who has has the better rendering algorithms, which gives
them the leading edge. In order to provide the best image quality, game devel-
opers use a long time to fine-tune every aspect of their games. However there is
also another side to real-time rendering, for example the interactive visualization
of large datasets that e.g., come from satellite images. In this case, the challenge
is to create tools that can automate all the steps required to render such complex
scenes in real time. Hence it is very important to create powerful algorithms for
real-time acceleration and realistic real-time illumination. In this thesis, we focus
on the different forms of visibility computations, which are an essential part of
most real-time rendering methods.

Visibility computations belong to the most fundamental operations in com-
puter graphics. They are inherently difficult to handle, as they are of global na-
ture, and it is impossible to provide an analytic solution for scenes with complex
visibility interactions. In this thesis we want to show that it is possible to achieve
output-sensitive high-quality rendering in real time for any scene configuration by
solving the visibility computations efficiently. Output sensitivity is the beneficial
property of an algorithm that the rendering time depends only on the output. In
terms of computer graphics, the rendering time must not be driven by the actual
scene complexity (consider brute force rasterization that always renders the whole
scene), but only by the complexity of the objects that are actually visible. Ideally,

2



1.2. Visibility culling

Figure 1.2: (left) Using visibility culling, we send only the visible buildings bor-
dering to the street (shown as red roofs in the small overview window) to the
graphics card for a low view point. (right) This is only a fraction of the buildings
rendered for a high view point.

no computational resources should be wasted on things that do not contribute to
the final image.

In order to reach our goals, we have to investigate and optimize both qual-

itative and quantitative visibility computations. Qualitative visibility (what is
visible?) corresponds to problems like binary visibility culling and hard shad-
ows. Qualitative visibility (how much is visible?), on the other hand, corresponds
to problems like soft shadows or ambient occlusion. These are rather expensive
techniques to compute in real-time, but at the same time absolutely important
ingredients for making images look realistic. We think that it is necessary to de-
velop intelligent yet stable solutions to these problems that are usable in practical
applications with standard consumer hardware.

Another recurring theme in this thesis is temporal and spatial coherence. In
real-time rendering, a new image is generated every fraction of a second, hence
the difference between two consecutive frames is only minimal in most cases, as
the view point will be almost the same, and the pose and position of animated
characters will only change slightly. We want to show that spatial and temporal
coherence can be exploited in several ways to improve and accelerate rendering
algorithms.

3



Chapter 1. Introduction

1.2 Visibility culling

1.2.1 Definition

The task of discarding primitives as fast as possible, in order to draw only those
that are visible from the current view point, is called visibility culling. The main
use of visibility culling is rendering acceleration by reducing overdraw and reach-
ing output sensitivity (see Figure 1.2). While visibility classifications are in-
herently solved for ray tracing, it is a difficult problem for the overwhelmingly
predominant group of renderers based on rasterization, as provided by consumer
graphics cards.

There are several classifications for visibility problems [COCSD02, BW03].
The two problems that got the most attention are 1) visibility from a region, which
corresponds to preprocessed visibility, and 2) visibility from a point, which cor-
responds to online visibility culling. In preprocessed visibility, we aim to find
the Potentially Visible Set (PVS) for a set of view cells. Preprocessing has the
advantage that once the PVS is found, it requires practically no additional over-
head during rendering, and support for PVS-based rendering is easily integrated
into any rendering engine. On the contrary, online occlusion culling requires no
preprocessing and works also for dynamic environments.

Another classification separates visibility algorithms into aggressive and con-

servative methods, which corresponds to underestimation and overestimation of
the PVS, respectively. If there is no over- or underestimation, we speak of exact
solutions, if there potentially is both over- and underestimation, the solution is
approximate. In practice, exact solution are of little practical relevance, because
they are both slow and prune to numerical errors. Sampling-based methods are
inherently aggressive in their nature, but they are more stable, and experiments
indicate that in practice they may be more accurate than theoretically exact algo-
rithms [WWZ∗06].

1.2.2 Problem relevance

We feel that despite many years of working on algorithms for visibility culling,
some basic research problems have not been sufficiently solved, which prevents a

4



1.2. Visibility culling

wide-spread use of intelligent and efficient tools for visibility, and we want to con-
tribute to close this gap. In the following we discuss why new visibility research
in various areas is still important nowadays.

Some people argue that the growing power of modern graphics hardware
makes visibility culling obsolete. Actually the opposite is true – even with the
newest graphics hardware, good visibility culling is a requirement for many ap-
plications. Faster graphics hardware goes along with more complex models and
shaders. This fact is illustrated in Figure 1.1. Visualizing a city model like Vienna
with 1M triangles was considered an immensely challenging task some years ago.
Models like the Powerplant with 12M triangles are still challenging today to ren-
der in full resolution, but they are simple compared to the Boeing model which
has nearly 30 times more triangles. For example, rendering the inner parts like the
accurately modeled cockpit while only the outside of the plane is visible would be
a huge waste and an overkill for any consumer hardware.

Good visibility culling is especially crucial in game development. In order to
satisfy the need for spectacular state-of-the-art graphics, game programmers can-
not afford wasting processing time on hidden geometry, which could otherwise
be spent on more realistic shaders. In game development, a significant share of
project man-months goes into calculating and optimizing the visibility in a scene.
Recently, there is a rapid evolution of applications like Google Earth, which re-
quire processing immense amounts of data in an interactive or dynamic fashion.
Rendering such large amounts of data in a naive way is virtually impossible. A
real-time visualization in acceptable quality raises some interesting issues for the
research community to solve, and also adds new requirements to the used visibil-
ity algorithms in terms of flexibility and scalability. Other examples for extremely
complex scenes are large vegetation scenes like forests. Many trees will be visible
only through small holes, nevertheless they will be rendered despite contributing
almost nothing to the final image. Such massive scenes often cannot be han-
dled by visibility alone – a combination of visibility with other techniques like
image-based rendering or polygonal level of detail is required to achieve accept-
able frame rates.

5



Chapter 1. Introduction

1.2.3 Other applications

Visibility culling has important applications in a variety of fields besides computer
graphics and rendering. There are several applications in computer vision, for ex-
ample the task of optimal sensor placing for surveillance [AAT93, LMD05] (solv-
ing the well-known art gallery problem), motion planning for robotics [NSL99,
MCTH05]), or computational geometry. Many visibility culling methods used for
rendering acceleration will be applicable for tasks within other fields with little
or no modifications. A topic that became very popular recently is using visibil-
ity culling for sound propagation [LSLS09, CATM09], where visibility has to be
computed efficiently for hundreds of potential receiver points.

Another example is the case of line-of-sight (LOS) algorithms. Line-of-sight
algorithms are used to find the mutual visibility between objects – this problem
basically corresponds to a of from-region visibility problem. For example, line-
of-sight computations are required in computer games (e.g., we evaluate if an en-
emy can see the player from a certain region), where errors can lead to unwanted
changes in the game play. Mutual visibility must also be queried in online mul-
tiplayer games that use peer-to-peer communication, in order to find out if com-
munication must be established between a pair of players. Evidently, fast line-of-
sight algorithms are of great importance in simulations that require some kind of
real-time response, such as simulations for disaster control, emergency manage-
ment, or military scenarios. There can be thousands of independent units which
can potentially see each other, hence millions of mutual visibility relations must
be evaluated in a fraction of a second. Solving these relations uses up a huge share
of the processing time of the simulation, which could be otherwise used for some-
thing else, e.g., better artificial intelligence. Some approaches to solve this highly
parallelizable problem involve multiple units of GPUs [SGS∗04, VMH∗05].

1.2.4 Visibility preprocessing versus online culling

In the scope of this thesis we investigate both visibility preprocessing and online
culling. In this section we discuss the reasons why we chose to work on both
paradigms, compare their applications and their individual strengths.

6



1.2. Visibility culling

Visibility preprocessing Visibility preprocessing has been studied since the
early nineties [Tel92b]. The mechanism creates practically no overhead, and can
be easily integrated into any engine on demand. During walkthrough, we just
have to locate the current view cell, and render all the objects in its PVS. On the
downside, it is inherently difficult for visibility preprocessing to handle dynamic
scenes.

Simple and powerful visibility preprocessing algorithms (or visibility
“solvers”) exist for special scenarios like indoor or city scenes [LG95a]. However,
handling general 3D scenes with preprocessing is a tough problem, and most pro-
posed solutions are either prone to robustness issues, slow, or aggressive in nature,
meaning that they are likely to suffer from visibility errors. Until recently there
were virtually no solvers on the market that provide satisfactory results in terms
of robustness and speed for general scenarios like outdoor scenes, or even worse
for difficult scenarios like massive foliage scenes.

While many solutions have been proposed for computing preprocessed visibil-
ity, only a very small number of papers deal with optimizing the input to the pre-
processed visibility algorithm, i.e., creating the view cells and the objects, which
are usually assumed to be given. Partitioning of the scene into view cells and
objects is a process that scene designers usually do by hand. Having a tool that
automatically creates a good set of view cells or set of objects in terms of render-
ing efficiency and memory cost would make this time-consuming task obsolete.
Obviously, just making the view cells so small that they are almost singular view
points, or solving the visibility on a triangle level is not feasible, because the mem-
ory cost for managing the PVSs would explode. Going one step further, in order
to create subdivisions which are optimal for rendering, view space and object
space subdivisions cannot be treated separately. Instead, we have to investigate
the combined optimization of both view space and object space subdivisions.

Online occlusion culling Since occlusion queries [BMH98] have become sup-
ported by graphics hardware, the direction of research has shifted from prepro-
cessed visibility towards online occlusion culling. Most online culling algorithms
are naturally image based – we only have to draw objects which contribute to the
rendered image in the current frame. In theory online culling is very appealing for
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developers because it requires no preprocessing, can handle arbitrary scenes, and
allows algorithms that are conceptually quite simple and easy to implement. In
particular it naturally allows the handling of dynamic scenes, which is inherently
difficult to do with preprocessing. Despite their huge potential, online occlusion
culling algorithms have been rarely used in actual engines or games, at best they
were integrated as an alternative to rendering methods using plain view-frustum
culling for some good reasons – from our practical experience with popular en-
gines like Ogre3D we know that there are cases where a simple algorithm per-
forming only view-frustum culling is faster than sophisticated occlusion culling
algorithms. Most existing online culling algorithm are notoriously hardware un-
friendly, and do not integrate well into existing engine designs. One goal of this
thesis is to develop strategies to avoid these disadvantages.

Discussion Considering the apparent advantages of online occlusion culling, the
question may arise whether we still need preprocessing once an efficient online
occlusion culling algorithm has been found. Our answer would be a clear yes. We
believe that both visibility preprocessing and online occlusion culling have impor-
tant applications, as well as a lot of potential for improvements. Both approaches
have their strengths and weaknesses, hence we want to investigate both of them.
For example, algorithms for visibility preprocessing have the reputation of being
notoriously difficult to implement. On the other hand, the visibility solver itself
is independent from the engine and can be shipped in the form of a stand-alone
program. It requires only little change to an existing engine to include the re-
sulting visibility solution in the form of view cells and their corresponding PVSs,
while the inner rendering loop remains untouched. On the other hand, hardware-
based occlusion culling algorithms can be challenging to implement into modern
engines, as they require changes to the innermost rendering loop. Also, as long as
there is enough memory to keep the PVSs, using preprocessed visibility is guar-
anteed to impose very little runtime overhead on any configuration of hard- and
software. We also have to keep in mind that visibility preprocessing has a wide
range of applications other than pure rendering, some of which we mentioned
before.

8
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1.2.5 Rasterization versus raytracing

Some people believe that rasterization as performed by modern GPUs will be ob-
solete in a couple of years and will be replaced by real-time ray tracing [RSH05],
and therefore there will also be no use for visibility culling. The arguments are that
ray tracing scales better with the scene complexity, and that ray tracing produces
more realistic images because it can be used to do reflections and refractions, and
will make global illumination feasible in the future.

We think that this transition is unlikely to happen in the near future. First of
all, the argument about better scalability is true only if compared to naive brute-
force rasterization. Ray tracing has such a good runtime behavior of O(logn)
in the number of primitives because it creates a scene hierarchy that immensely
accelerates the spatial search for the next intersection point. Also, ray tracing
has natural output sensitive behavior because it is image based, and less rays are
required for small distant objects. One has to realize that it is possible to achieve
the same beneficial runtime behavior in rasterization with hierarchical visibility
culling combined with level-of-detail or image-based rendering.

On the other hand, ray tracing has several disadvantages: An efficient ray
tracing implementation is highly dependent on hardware specific optimizations.
Likewise, ray tracing is not as straightforward to parallelize as it seems – the hi-
erarchical structures are inherently difficult to implement robustly and to traverse
fast on parallel hardware. Also, ray tracing has the inherent problem of casting in-
finitely thin rays at a time, which can lead to aliasing. Furthermore, ray tracing can
be optimized mainly for coherent primary rays. Secondary rays from reflections
and refractions are less coherent and hence have less potential to be optimized.
Rasterization achieves similar effects very efficiently with techniques like envi-
ronment maps and shadow maps. Accurate global illumination in real time is still
impossible with either technique.
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1.3 Quantitative visibility for realistic lighting

1.3.1 The rendering equation

Visibility computations are of immense importance for any field of computer
graphics that aims to solve the rendering equation [Kaj86, ATS94], which com-
putes the radiance emitted into direction ω from point p:

L(p,ω) = Le(p,ω)+
1
π

Z
Ω

fr(p,ω′,ω)Li(p,ω′)(ω ·n)dω
′. (1.1)

Le is the self emission, fr is the bidirectional reflectance distribution function

(BRDF), Li is the incident light from direction ω′, and n is the surface normal.
Its evaluation requires solving complex visibility interactions, which eventually
become the bottleneck of most algorithms that compute realistic lighting effects,
like shadows, global illumination, or ambient occlusion. These problems have a
one-to-one correspondence with problems from visibility culling. For example,
hard and soft shadows correspond to from-point and from-region visibility, re-
spectively. View cells are often treated as area light sources in literature, where
invisible objects correspond to those that lie in the umbra region of a view cell,
while objects that lie in the penumbra are visible from one or more view points, but
not from all of them. Visibility queries can be efficiently solved on the hardware
by using one or multiple shadow maps [Wil78] to calculate the direct influence
of a point or area light source. Shadow maps can be seen as a discretization of
the visibility from a light source sample and are thus well suited to be computed
with rasterization hardware. Some methods use a gathering or splatting approach
to distribute either illumination or shadowing.

1.3.2 Ambient occlusion

One chapter of this thesis deals with ambient occlusion computation. Ambient oc-
clusion is a shading technique that essentially strips down the rendering equation
to pure visibility calculations in the hemisphere of a surface point. It evaluates
the percentage of the hemisphere which is occluded, assuming a perfectly diffuse
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Figure 1.3: Buddha and Dragon models rendered with ambient occlusion.

material and omitting all further light bounces. Ambient occlusion of a surface
point p with normal n is computed as [CT81]

AO(p) =
1
π

Z
Ω

V (p,ω′)(n ·ω′)dω
′. (1.2)

Ω denotes all directions on the hemisphere, and V is the (inverse) binary visi-
bility function, which usually considers obstacles within a certain sampling radius
only:

V (p,ω′) =

0 if direction ω′ is blocked

1, otherwise.
(1.3)

This relatively cheap method gives a great impression of indirect lighting and
soft contact shadows, as can be seen in Figure 1.3. Our main interest was to
improve screen-space ambient occlusion, a popular variant which uses the depth
buffer as discrete scene representation. Screen-space ambient occlusion decouples
shading from the scene complexity, which is very important to reach one of our
goals – to achieve output sensitivity.
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1.4 Main contributions

The contributions of this thesis have been published at peer reviewed conferences
in three separate papers [MBW06, MBWW07, MBW08], except for one of our
proposed methods, which is from a yet unpublished paper. We shortly describe
our main results.

• The first paper describes an algorithm for adaptive view cell construction
based on coarse visibility sampling. The algorithm consists of a spatial BSP
subdivision of the scene and a subsequent merging step, which are guided
by a novel render cost heuristics. A huge body of papers deals with com-
puting the actual visibility in the scene, whereas the important task of au-
tomatically computing view cells that are optimized for rendering has been
almost neglected before. This is one of only a handful of papers that are
dedicated to the problem of view cell construction in particular. The work
has been published in Rendering Techniques 2006 (Proceedings of Euro-
graphics Symposium on Rendering), 195-206, June 2006, Nicosia, Cyprus.

• The second paper proposes an extension of the previous work on optimized
view cell construction, and also utilizes coarsely sampled visibility to guide
the subdivision process. Due to their related content, we discuss these meth-
ods together in this thesis. The new algorithm constructs interleaved sub-
divisions of both view space and object space in a way that the combined

subdivisions are optimized for rendering. The globally progressive subdi-
vision process allows balancing between memory cost and render cost of
the PVSs. The work has been published in the Proceedings of Graphics
Interface 2007, 335-342, May 2007, Montreal, Canada.

• The third paper describes an algorithm for efficient online occlusion culling
using hardware occlusion queries. The algorithm significantly improves
on previous techniques by reducing the overhead induced by the hardware
occlusion queries to a minimum, and by making better use of temporal and
spatial coherence of visibility. As a result of the new optimizations the num-
ber of issued occlusion queries and the number of rendering state changes
are significantly reduced. Also, the new algorithm integrates much better
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with existing game engines, and unlike many previous hierarchical culling
algorithms allows efficient material sorting. This work has been published
in Computer Graphics Forum (Proceedings of Eurographics), 27(2), 221-
230, May 2008.

• The fourth paper proposes a high-quality screen-space ambient occlusion al-
gorithm utilizing temporal coherence to accumulate samples over time. We
introduce a new invalidation scheme for discovering invalid pixels (i.e., pix-
els where the assumption of temporal coherence does not hold). Techniques
like adaptive sampling and adaptive convergence-aware filtering make this
algorithm well suited for fully dynamic scenes. The work is conditionally
accepted with minor revisions in Computer Graphics Forum.

Also, the author of this thesis co-authored a paper about a progressive sampling-
based algorithm for preprocessed visibility called Adaptive Global Visibility Sam-
pling [BMW∗09], which was presented at Siggraph 2009. The algorithm uses
some concepts proposed in Chapter 3 about scene preprocessing, and in a way
complements this work. Furthermore, he participated in a paper about temporal
coherence for soft shadow rendering, which was presented at ISVC 2009 [SSMW09].
This algorithm is related to the work about high-quality ambient occlusion using
temporal coherence presented in Chapter 5.

1.5 Structure of this thesis

Chapter 2 investigates the related work in real-time rendering, focusing on visibil-
ity computations in particular. Next we describe our four novel algorithms. Both
algorithms that deal with optimized scene preprocessing are discussed together in
Chapter 3, first the algorithm for view cell generation, then its extension into a
combined optimization of view space and object space subdivisions. In Chapter 4
we describe an optimized algorithm for online occlusion culling. In Chapter 5
we propose a screen-space ambient occlusion algorithm that uses temporal coher-
ence and reprojection. At last we give our conclusions and discuss possible future
directions in Chapter 6.
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What delights us in visible

beauty is the invisible.

Marie Von Ebner-Eschenbach 2
Related Work

In this chapter we first discuss the basics requirements of real-time rendering,
then we describe techniques for hierarchical subdivision of a 3D scene, which are
an integral part of all of our visibility culling algorithms. Next we investigate
methods for rendering acceleration: simplification methods using level-of-detail
or image-based rendering, and most importantly the main topic of this thesis -
visibility culling. At last we discuss the applications of non-binary visibility for
realistic lighting, and in particular ambient occlusion algorithms.

2.1 Techniques for real-time rendering

The goal of real-time rendering is to provide the best possible visual quality within
at least 60 FPS [Wim01]. For more complex models like the one shown in Fig-
ure 2.1, this task requires a number of non-trivial techniques. In practice, we need
to also take additional computationally intensive tasks like physics, artificial intel-
ligence, and simulations into account, all of which occupy a share of the available
resources. Hence we want to keep the time spent on the actual image synthesis
as short possible. In particular we want to avoid wasting processing time on pro-
cessing geometry that does not contribute to the final image – this is the purpose
of visibility culling. Another difficult task for developers of real-time graphics is
to balance the load between different processing units on a particular hardware,
using all processing units to their full capacity. In the case of standard PC hard-
ware, this usually involves the synchronization of a multicore CPU and one or
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Figure 2.1: The goal of real-time rendering is to render views like this in the
complex Pompeii model (40M triangles) with more than 30 FPS.

two graphics processing units (GPU), but the trend goes to more and more par-
allizable hardware. Programming APIs like CUDA or OpenCL allow massively
parallel programming, and in case of high-end consoles like the Playstation 3, a
couple of cell processor units must be synchronized.

Trivial acceleration techniques that are part of virtually any real time applica-
tion are backface culling, where backfacing polygons are pruned early, and view-

frustum culling, where a simple bounding geometry of an object is tested for in-
tersection with the view frustum. Only if the bounding geometry intersects the
view frustum, the object itself is potentially visible and has to be rendered. Like
many other techniques, view-frustum culling scales much better with the scene
complexity when used in a hierarchical fashion [AM00], reducing the complexity
from O(n) to O(log(n)) in the number of objects.

To determine the visible objects early and achieve output sensitivity, we re-
quire visibility culling. However, visibility culling as a stand-alone technique can
generally not guarantee a sufficient frame rate. Hence visibility culling is often
used in combination with simplification techniques like level-of-detail or image-

based rendering.

Game studios invest a huge amount of time and effort into careful level design
and subsequent play testing to guarantee real-time frame rates and to avoid vis-

ibility hotspots (i.e., view points where too much is visible, causing frame rate
drops) [ED07]. Unfortunately, such a fine tuning of a scene is not possible if
data and hardware is not known in advance, and some applications rely on more
automatized methods.
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2.1.1 Render-time estimation and calibration

Automatic acceleration and load-balancing techniques aim to provide the best pos-
sible image quality with constraints on the required frame rate. Funkhouser and
Sequin. [FS93] proposed a predictive load-balancing system that solves a variant
of the knapsack problem, where the items are different level-of-details, and the
weights are their predicted rendering times. The system bounds the frame time
by choosing the appropriate level-of-detail based on a rendering time estimation.
They use the following cost-benefit heuristics:

RT (x) = max(Cp|p(x)|,Cv|v(x)|,C f | f (x)|), (2.1)

where |p(x)|, |v(x)|, | f (x)| are the number of polygons, vertices, and frag-
ments, respectively, and C is the associated cost. It is crucial for any load balanc-
ing system to use a formula that reliably estimates the rendering time. Unfortu-
nately, this particular formula is targeted to older systems and not usable without
modifications on new hardware with modern GPUs.

An alternative to such predictive system are reactive systems [RH94] that cor-
rect their workload based on the actual frame time. However, these systems cannot
guarantee a bounded frame time, and they have to be carefully tuned to be suffi-
ciently responsive for reacting to swift changes on the one hand, and to avoid
hysteresis effects on the other hand.

Wimmer and Wonka [WW03] proposed a rendering time estimation that is
more fitted to the demands of newer hardware, and the use of dedicated GPUs in
particular. They give a formula that describes the relationship between CPU and
GPU rendering:

RT (x) = ETsystem +max(ETCPU ,ETGPU), (2.2)

which indicates that either CPU or GPU time will be the bottleneck. They
state that the actual GPU time lies somewhere between the maximum and the sum
of the following terms:

max(Ctv|tv(x)|,C f | f (x)|)≤ RTGPU(x)≤Ctv|tv(x)|+C f | f (x)| (2.3)
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Figure 2.2: The nodes of an object hierarchies like BVH (left) can be disjoint or
overlap spatially. Space subdivisions like kD-tree (right) partition the space but
have to share object references between leaves.

|tv(x)| is the number of the actually transformed vertices (i.e., the vertices not
fetched from a post-transform vertex cache), which is responsible for the impact
rather than the total number of primitives and vertices. Their heuristics match
the experimental results sufficiently well. However, due to the limitations of the
hardware functionality, they still cannot guarantee a hard real-time system that
can fulfill the target frame rates in any case. Also, we have to keep in mind
that there have again been significant changes to the hardware architectures since
(e.g., unified shaders), which would require to make some adjustments to these
formulas based on new measurements. Anticipating this development, Wimmer
and Wonka [WW03] also mentioned a method which works independent of the
current hardware architecture, based on measuring the actual rendering time.

Such a rendering time heuristics plays an important role in some of our pro-
posed algorithms in Chapter 3. Instead of using it for online calibration of the
rendering time, we use it in a preprocess to drive our view space and object space
partitioning methods.

2.2 Hierarchical subdivision schemes

Hierarchical subdivision schemes have been of crucial importance for many tasks
in 3D computer graphics. A huge number of variants exist for several target ap-
plications, like ray tracing, occlusion culling, or collision detection. They are
commonly used as acceleration technique in order to speed up spatial searching.
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In ray tracing we aim to minimize the number of ray intersection tests that are
required to find the intersection between the ray and the closest surface. Ideally,
hierarchical subdivision schemes will break down the dependence of the rendering
time on the scene complexity from linear (O(N)) to logarithmic (O(log(n))). A
more thorough discussion of hierarchies in the context of ray tracing can be found
in the thesis of Havran et al. [Hav00]. In a slightly outdated report, Meißner
et al. [MBM∗01] compare the performance of different hierarchies for occlusion
culling with hardware occlusion queries.

Subdivision schemes are a key element of all our visibility culling techniques.
We use hierarchies to generate good view space and object space partitions dur-
ing scene preprocessing in Chapter 3, and to accelerate view-frustum culling and
online occlusion culling in Chapter 4.

2.2.1 Space subdivisions versus object hierarchies

Hierarchical subdivision schemes in computer graphics are either space subdivi-
sions (or partitions) or object hierarchies (refer to Figure 2.2). Space subdivisions
partition the space, and during subdivision nodes are split into two or more chil-
dren separated by split planes. Hence the leaves are spatially non-overlapping. If
an object does not fit into a single node, we can either allow object references to
be shared between several nodes of the hierarchy, or we can split the objects along
the split planes of the nodes. We generally advise to use the first option in case
of real-time rendering, as object splitting can cause degeneracies, and yield many
small objects which is problematic for modern GPUs.

On the other hand, multiple rendering of the same object can be avoided eas-
ily by using a simple technique called mailboxing (also known as ray-cache in
ray tracing) [Hav00], which we use frequently in our algorithms for scene prepro-
cessing and online culling. Mailboxing is a general technique to avoid multiple
processing of the same primitive, by utilizing a global and a local counter per
primitive (the “mail box”). In each pass we increase the global counter. Then
we compare the mail box of each primitive to the global counter – if they have
the same value the primitive has been already touched in this pass, else the prim-
itive is processed, and the mail box is updated to the value of the global counter.
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Note that this simple method has to be used with caution when it comes to paral-
lelization, because a function or thread that uses mailboxing can conflict and alter
the results of other functions or threads that use mailboxing. Another option to
avoid multiple references would be to allow storing objects in interior nodes, and
pushing them down the tree as long as they still fully fit into the node.

On the contrary, the nodes of an object hierarchy can be spatially overlap-
ping or disjoint, while each object belongs to exactly one leaf. Large overlapping
regions near the root node can lead to decreased search efficiency of an object
hierarchy compared to a spatial hierarchy and should be avoided. Widely used
spatial subdivision schemes are binary space partitioning [FKN80], kD-tree, oc-
tree [Gla84], grid, and hierarchical grid. Mixed forms are also possible like B-kD
tree [WMS06], or loose octree [HAM02]. We will give a short description of the
most important subdivision schemes, and then describe the important surface area
heuristics for node splitting.

2.2.2 Bounding volume hierarchy

Bounding volumes are a conservative approximation of the contained geome-
try, which they fully include. Since many years they have been used to reduce
the cost of intersection queries, e.g., for ray tracing, rasterization, and collision
detection [MT97]. Typical bounding volumes are axis-aligned bounding boxes
(AABB), object-aligned bounding boxes (OOBB), spheres, and k-dops [KHM∗98].
There is a trade-off between cost of intersection and tightness of a bounding vol-
ume. Using a more complicated bounding object may pay off if it fits the actual
geometry better. A GPU is optimized for sending large batches of geometry with
each draw call. Hence, for algorithms where the GPU processes bounding vol-
umes directly, more complicated bounding objects are beneficial in order to use
the GPU to its full capacity – it usually does not matter if the GPU processes only
six vertices of a bounding box or several times more vertices.

A bounding volume hierarchy (BVH) [GS87] is a hierarchy over all the indi-
vidual bounding volumes, where each parent volume contains all the leaf volumes.
The BVHs used in computer graphics are usually binary trees with two children.
As nodes of a BVH can either overlap or be disjoint, the major strength of a BVH
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is its great flexibility and the ability to be modified easily. Also, because the fact
that there is exactly one object reference per hierarchy, no additional memory has
to be allocated for shared references during subdivision, allowing faster rebuild
than most other techniques.

When used for ray tracing, traversal of a BVH is slower than traversal of a
kD-tree, because of the costlier intersection test (six sides of a box versus sin-
gle plane). However, BVH is an excellent alternative for ray tracing of dynamic
scenes, where build time and update time of the hierarchy are dominating fac-
tors [Wal07]. BVH can handle dynamic objects very elegantly either by up-
dating the extent of the nodes or by regenerating parts of the hierarchy. When
used for rasterization, BVH seems to outperform most other techniques. It has
been shown to be very efficient for occlusion culling with hardware occlusion
queries [MBM∗01], as it allows relatively tight bounds for objects in sparse scenes
compared to e.g., octrees or even kD-trees. While kD-trees are a good choice for
ray tracing because of the fast traversal times, they lose this advantage over BVH
for rasterization. These are also the reasons why we generally use BVH in our
algorithms whenever we have to build a hierarchy over the scene geometry, be it
for preprocessing or online occlusion culling. Note that there are also algorithms
for bottom-up construction of a BVH based on clustering.

2.2.3 Binary space partitioning

A binary space partitioning (BSP) tree is the most general of the listed spatial
subdivision schemes. It has the highest degrees of freedom, as the split plane ori-
entation can be chosen freely. Aligning the split planes with the geometry makes
it possible to separate the geometry into an inside and an outside part [Tel92b].
In the past, BSP has been a widely used scheme in ray tracing and also for visi-
bility determination in rasterization back when overdraw was very costly, and the
predominant type of scenes were structured architectural scenes with straight cor-
ridors. BSP is difficult to use with nowadays’ increasingly complex scenes (con-
sider e.g., large vegetation scenes), and the gained accuracy is usually not worth
the extremely time consuming task of generating an optimized BSP tree [Abr96].
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2.2.4 kD-tree

A kD-tree can be seen as a specialization of a BSP tree, and is a good trade-
off between flexibility and complexity. The split plane of a kD-tree is always
axis aligned. Several heuristics exist to choose the position of the split plane, e.g.,
spatial median, object median, or the superior surface area heuristics [Hav00]. kD-
trees have been very popular for ray tracing acceleration, as they statistically have
the best performance for traversal over a large class of scenes with the Surface
Area Heuristics. They have the useful ability to cut off large regions of empty
space in early stages of the subdivision. The object references are usually stored
in the leaf nodes that intersect the bounding box of an object (allowing multiple
references). Partly because these multiple references can be quite inconvenient
to handle, we use kD-tree and even BSP only for view space subdivision in our
algorithms.

2.2.5 Octree

The classical octree divides the parent node into 8 equally spaced child nodes
along all three axes. The split planes are always set to the spatial median of the
node in each axis. Objects can be either stored in the leaves (allowing multiple
references), or each object is stored in the smallest node that fully contains it
(allowing nodes to be stored in interior nodes). This data structure is easy to
implement, fast to update, very robust in the sense that it never degenerates, and
yields solid to good performance in virtually any case. However, it is less suited
for scenes that are rather unevenly distributed (e.g., the famous teapot in a stadium
scene) than more flexible schemes like kD-tree. Due to this inflexibility, an octree
can become inefficient if objects intersect the borders between two octants early
in the subdivision. In this case even small objects may end up near the root just
because of their location in the tree, or have to be referenced in many octants. In
the worst case, an object has to be referenced in all eight octants if it incidentally
lies near the exact center of the root node.

Loose octree The loose octree is a variant of the octree that solves the above-
mentioned problem. The additional parameter R describes the extended radius of
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a node. The extended radius is R times larger than the radius of the original oc-
tree node, allowing for some overlap between the nodes. In this particular octree
implementation, objects belong to a single node, which can either be a leaf node
or a interior node. Objects are placed into the smallest node where they still com-
pletely fit into. Setting R = 0 yields the original octree with no overlap between
nodes. Choosing a larger R means that objects are placed deeper down the tree and
less objects have to be touched. On the other hand the octree becomes ”looser”
(= more conservative) and more nodes have to be tested. The loose octree is an
excellent data structure for fully dynamic scenes, as insertion and deletion of an
object is cheap. Choosing R = 2 is convenient, because an object always fits fully
into the extended node if it is smaller or equal in size to the original octree node.
Furthermore, the hierarchy level of the node can be immediately derived from the
size of the object, hence insertion can be done in O(1) [HAM02]. Such a data
structure is used, e.g., by the rendering engine Ogre3D [Jun06].

2.2.6 Grid and hierarchical grid

Grids are simple to implement and quick to build. During runtime the cell that
contains the current view point can be found in constant time. On the downside,
grids are inflexible, and choosing the right granularity for the grid is essential for
a good performance. In scenes where the geometry is very unevenly distributed,
a globally good granularity cannot be reached. In such a case, the more flexible
hierarchical grid [CDP95] can be used. A hierarchical grid could be seen as a
generalization of an octree with n children, with n being the number of grid cells
in a single grid. Recently grids got renewed awareness in the context of ray tracing
in dynamic scenes, because in general they do not have to be updated between
frames [WIK∗06].

2.2.7 Surface area heuristics

The surface area heuristics (SAH) [MB90] is known as the best cost model for
ray-object intersections. It is used for two purposes -it decides if splitting a node
is feasible or subdivision should be terminated at this point, and computes the
optimal split plane position. One of the reasons for the success of kD-trees is
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that they can be easily optimized with SAH. This heuristics assumes a uniform
distribution of rays without considering occlusion and then performs a greedy
optimization. The method achieves very good results for ray tracing applications,
and it is also useful for rasterization, where the view frustum can be seen as a
beam of rays. The estimated cost for a node after the split into a left child Cl and
a right child Cr is

C = plCl + prCr, (2.4)

where p is the probability that the child node will be traversed given that the
parent node is traversed, which is equal to the ratio of the surface area A of the
child node to the surface area of the parent node, hence the formula can be written
as

C =
AlCl +ArCr

A
. (2.5)

Intuitively, one of the strengths of SAH is that it cuts off regions of empty
space very soon. The decision to further subdivide a node is based on the ratio of
the estimated cost of the parent node and the estimated costs of the child nodes.
The candidates for split planes in a kD-tree node are induced by the bounding
boxes of the primitives, because there can be no maximum of the cost function
in between. Building a tree with SAH requires O(n log(n)) time if the split plane
candidates are pre-sorted globally, but faster approximations exist [HMS06]. SAH
is not restricted to kD-trees, and has been successfully used with other schemes
like BVH.

2.3 Methods for rendering simplification

2.3.1 Level of detail

Level of detail (LOD) denotes the representation of an object using different levels
of simplification. It is based on the assumption that under certain conditions a
simplified version of an object provides sufficient rendering quality. In early years
geometric LOD was predominantly used. Nowadays it is as important to have
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Figure 2.3: Hierarchical level of detail [EMWVB01] of the DoubleEagle tanker
model. (Image courtesy of Erikson et al. [EMWVB01]).

other forms of LODs like shader level of detail, where a single material contains
several shader versions with varying complexity, and detail textures for extreme
close-ups. Most commonly, the appropriate LOD level is chosen based on the
distance to the view point. Perceptually it is very important that the transitions
between different LOD levels stay unnoticed.

Geometric level of detail can be either discrete or continuous. Continuous
level of detail was a vivid research area for many years [Hop96]. However, it is
rarely used in practice because developers rather want to have full control over the
LOD representations at any time. Furthermore, techniques like edge collapse are
inefficient on modern GPUs.

Discrete LODs are easier to handle than continuous LODs, but suffer from dis-
tracting popping artifacts in the moment when they make a so called hard switch
between two representations. There are different ways to avoid these artifacts.
Delaying the switch until there no visual difference between the two represen-
tations (so-called late-switching) completely removes popping artifacts, but does
not offer enough potential for rendering acceleration. It is more useful to have
smooth blending between subsequent LOD levels [GW07, SW08], which makes
the transition much less noticeable.

Using traditional LOD generation for the simplification of highly complex
models is suboptimal for rendering on modern GPUs, because many low-poly
models must be handled as separate entities. Another disadvantage of traditional
LODs is that each object is simplified separately on a local level, but no attention is
given to the global appearance. Erikson et al. [EMWVB01] avoid these drawbacks
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Figure 2.4: The 4D light field describes the radiance on a ray between any two
points. Images are 2D slices of the 4D light field (Image courtesy of Levoy et
al. [LH96a].

using hierarchical level of detail (HLOD). The method simplifies the geometry
on a global level, keeping the highest (i.e., most detailed) LODs in the leaf nodes.
Using a bottom-up construction with the constraint that all LOD levels should
have roughly the same number of triangles that is optimal for the given GPU, the
method combines and simplifies the geometry contained in the two child nodes
before storing it in the parent node. An example of HLOD of the DoubleEagle
tanker model can be seen in Figure 2.3.

2.3.2 Image-based rendering

Unlike standard 3D rendering, which renders from geometry, image-based ren-

dering (IBR) renders directly from images. Skipping the whole transformation
pipeline, image based approaches can accelerate rendering significantly. On the
downside, they may require a lot of texture memory and precomputation time, and
it is nontrivial to handle several features that are taken for granted when working
with real geometry, like dynamic scenes, depth, or relighting.

The most extreme form of image based rendering is the 4D light field [LH96a],
also known as the Lumigraph [GGSC96], where images are treated as 2D slices
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of a 4D function. This function describes the radiance of a ray between any 2
points on the two planes that parametrize the light field (refer to Figure 2.4). This
approach allowed to render complex objects and environments at real-time frame
rates back in 1996, but has an enormously high memory footprint and limited
degree of freedom.

IBR rendering is commonly used in combination with actual geometry in the
form of impostors or billboards, based on the assumption that geometry can be
represented reasonably well by images within certain constraints [Jes05]. When
moving through the scene, the images will eventually become invalid (i.e., their
approximation error becomes too high), and they have to be updated accordingly.
Good candidates for billboards are far away objects that change their appearance
slowly, e.g., the sun, the sky, or a distant background. The parallax error of im-
postors can be reduced with layered depth images [SGHS98].

The image cache [SLS∗96, SS96] algorithm constructs a scene hierarchy and
keeps cached images of nodes on different hierarchy levels. Due to temporal
coherence, the images can be reused for a certain lifespan. The method automati-
cally updates nodes corresponding to invalidated regions, based on an error metric
that quantifies the difference between the cached image and the real appearance.
However, the technique requires a high amount of texture memory and frequent
updates if the constraints are very strict.

The high memory requirements of impostors were addressed by Jeschke et
al. [JWS02]. They aim to reach a desired target frame rate and image quality
using automatic impostors placement, while keeping the texture memory con-
sumption low. For optimal performance, they use impostors in combination with
conservative visibility culling and geometric LODs.

Impostors are well suited to fill up holes resulting from aggressive visibility
culling. This approach is useful for dense forest scenes, where trees in the back-
ground are only visible through small holes in the foreground [SLCO∗04]. See
Section 2.4.4 for an overview of hybrid methods that combine IBR, LODs, and
visibility culling.

Billboard clouds [DDSD03] represent geometry as a set of billboards that are
oriented according to some similarity heuristics. Billboard clouds combine the
strengths of mesh decimation and IBR, allowing automatic simplification within a
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given error bound. Billboard clouds have been successfully used for approximat-
ing complex geometry with high frequencies like trees [MHMT05], but are less
useful for representing regular structures like buildings.

Normal mapping is a technique that simulates surface details on simple or sim-
plified geometry. Appearance-preserving simplification [COM98] can be done by
storing the high-frequency normals of the detailed model in a normal map, and
using this map to illuminate the surface instead of the actual normal of the sim-
plified model. The illusion breaks at the silhouettes of objects. Parallax map-
ping [KTI∗01] displaces texture coordinates according to a height map, which
gives a better impression of the parallax effect and depth perception. Using
a generalization of relief mapping, non-height-field mesostructures like weaves
can be represented with minimal distortions [PO06]. At the cost of longer ren-
dering times, a correct parallax effect, self occlusion, and silhouettes can be
achieved [JMW07].

2.4 Visibility culling

In this section we discuss one of the core topics of this thesis, methods that
aim to detect the visible parts of the scene as early as possible. For a general
overview of visibility culling please refer to the excellent surveys of Cohen-Or et
al. [COCSD02] and Bittner and Wonka [BW03].

Many classifications of visibility algorithms exist in literature. Some of them
seem to be outdated, like the classification according to the dimensionality –
nowadays 2D and 2.5D visibility problems are mostly solved and lost their sig-
nificance as a research problem. In this survey we instead focus on techniques
that are able to handle arbitrary 3D scenes. Naturally visibility preprocessing al-
gorithms compute visibility from one or multiple regions in space (otherwise we
would have to deal with an infinite number of view points), whereas online oc-
clusion culling algorithms calculate visibility from a single view point. Hence we
use the straightforward distinction into algorithms for visibility preprocessing and
algorithms for online occlusion culling.

First we investigate algorithms that partition the object space and view space
of a scene, which is a necessary preparation for subsequent visibility culling. Then
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we discuss algorithms for visibility preprocessing, and afterwards algorithms for
online culling. At last we discuss algorithms that combine visibility culling with
other acceleration techniques like LODs and IBR.

2.4.1 Methods for scene preprocessing

Given a scene that consists purely of a triangle soup, we first have to partition
the view space into regions in space, so called view cells, and the object space
into meaningful entities. Only afterwards we can apply algorithms that find the
potentially visible objects for each view cell. The quality of scene preprocessing
will have a large influence on the efficiency of the PVS computation, and during
runtime on PVS-based rendering in terms of rendering time and memory cost.
The following part of our survey discusses algorithms for scene preprocessing,
which are previous work for our scene processing algorithms in Chapter 3.

View space subdivision techniques for view cell generation have been used
in visibility preprocessing from the very beginning, whereas objects are often as-
sumed to be already given, e.g., designed by an artist. An automatic object con-
struction is useful in the case that no objects are given a priori, or if the given
objects are suboptimal for visibility culling (e.g., too large or of uneven sizes).
Note that it is always infeasible to use a triangle soup directly for rendering, be-
cause modern GPUs prefer many primitives per rendering call for optimal perfor-
mance. It would also require a huge amount of memory to store the triangle-based
PVSs of all view cells. First we give an overview of algorithms for view space
subdivision, then we discuss the few papers that cover object space partitioning.

2.4.1.1 View space partitioning

The first visibility preprocessing methods were designed for accelerating walk-
throughs of indoor architectural environments [ARB90, TS91]. These methods
partition the scene into cells roughly corresponding to rooms in the building. The
cells are connected by portals which correspond to transparent boundaries be-
tween the cells.

Airey et al.[ARB90] defined a set of rules which the view space subdivision
algorithm should satisfy. They construct a kD-tree where the subdivision planes
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are aligned with scene polygons. For each candidate plane they compute its pri-
ority as a weighted sum of its occlusion properties and the estimated balance and
size of the tree. A similar technique was used by Teller and Séquin [TS91], and
was later extended to an auto-partition BSP tree [Tel92b].

As noticed by Teller [Tel92b], in general 3D scenes with non-axial polygons,
the subdivision may result in cell fragmentation. This problem was addressed by
Meneveaux et al. [MBMD98], who focused on building interiors. In the first
step they extract the floors of the building, and in the second step they use a
2D method to partition each floor separately. The 2D method clusters candidate
splitting planes in dual space to find those planes which provide the best fit to the
walls of the building.

Despite the research on constructing cell and portal graphs, the manual con-
struction of cells and portals during the modeling phase is still considered a valu-
able option especially for indoor maze-like scenes [LG95b, Ail00].

Lerner et al. designed an algorithm which aims to create short por-
tals [LCOC03]. The algorithm is suitable for 2D scenes and 2.5D scenes with
buildings of comparable height. The authors also present a cost model for evalu-
ating the efficiency of the resulting partition. Using this cost model, it is shown
that the method delivers superior partitions compared to previous BSP tree based
algorithms. As all view cells have the same user defined height, the efficiency
of the algorithm is highly dependent on this parameter. Also, the resulting par-
tition lacks any kind of horizontal separation, which from our experience is very
important in outdoor scenes.

Haumont et al. [HDS03] chose a significantly different strategy for construct-
ing a cell and portal graph. They use a voxelization of the scene and the water-
shed algorithm computed on a distance field. The method grows cells from local
minima of the distance field and introduces portals when two cells meet (refer to
Figure 2.5). Similarly to the method of Lerner et al. [LCOC03], this approach
uses a top-down subdivision (voxelization) as well as a localized bottom-up cell
construction (watershed).

All the methods mentioned above deal with the construction of cell and portal
graphs. The PVS concept has been used by numerous methods which do not
need portals for PVS computation [COCSD02]. Most of these methods focus
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Figure 2.5: Haumond et al. use a watershed algorithm on a distance field to
compute the cells. The portals are set to the saddle points where two cells meet
(Image courtesy of Haumond et al. [HDS03]).

only on the PVS determination step, i.e., computing from-region visibility. They
assume that the view cells are either defined by the user or use a simple view space
subdivision without further considerations.

However, there are several methods which indirectly deal with the problem of
finding a good set of view cells. Additionally, unlike the above-mentioned cell
and portal methods, they make use of the actual visibility information [GSF99,
SVNB99, vdPS99, NB04a].

Van de Panne and Stewart [vdPS99] designed a compression scheme for PVSs
computed for a set of view cells. As a side-product of the compression, some cells
get merged.

Gotsman et al. [GSF99] construct a 5D subdivision of view space in the spatial
and angular domain corresponding to the position and direction of viewing rays.
They use sampled visibility to evaluate the efficiency of the candidate splitting
planes using the following heuristics for the efficiency of a split of node n into
child nodes l and r:

E f f (l,r) =

(
1−|PV S(l)∩|PV S(r)|

|PV S(n)|

)(
1−|V (l)∩|V (r)|

|V (n)|

)
, (2.6)

where the first term emphasizes the difference in the PVSs, and the second the
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tree balance in terms of 5D volumes V . The split candidates in the spatial domain
are induced by the bounding boxes of the objects. Unfortunately, the authors give
no hint in the paper of how to choose split candidates in the angular domain. To
reduce the high storage requirements they suggest to store the PVSs in bitsets,
setting bit i to 1 if the object i is in the PVS, to 0 otherwise.

The visibility octree of Saona-Vázquez et al. [SVNB99] is constructed by a
view space subdivision which terminates when reaching a predefined triangle bud-
get or when visibility cannot be reduced by the associated conservative algorithm.
Similarly to Saona-Vázquez et al. [SVNB99], Nirenstein and Blake [NB04a] use
a hierarchical view space subdivision which is terminated if the desired triangle
budget is reached. Using aggressive visibility sampling, the triangle budget is
determined from the PVS computed for the view cell.

The view cell determination in all these methods is driven by rather simple
models which consider only PVS set differences. Additionally the methods of
Gotsman et al., Saona-Vázquez et al. and Nirenstein and Blake perform only
top-down view space subdivision, which need not adapt well to local visibility
changes. On the other hand the method of van de Panne and Stewart performs
only bottom-up construction, which does not permit using a larger number of ini-
tial view cells. In comparison, our method for view cell construction 3.4 aims to
give a deeper analysis of finding a good set of view cells based on actual visibility.
We provide a new cost model for evaluating the efficiency of the constructed view
cells. The model is based on the estimated render cost for a given view space par-
tition. Also, it does not provide only a fixed set of view cells. Instead it constructs
a novel form of view cell hierarchy from which we can extract an optimized set of
view cells for a given memory budget.

2.4.1.2 Object space partitioning

Creating a set of objects from a triangle soup can be done using top-down (sub-
division) or bottom-up algorithms (clustering or merging), or a combination of
those. Clustering algorithms are usually quite slow, hence subdivision algorithms
like kD-tree or BVH have been predominantly used in the past for different ap-
plications like ray tracing, occlusion culling, and collision detection, with some
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Figure 2.6: Baxter et al. [BSGM02] redefine the given objects. Top row: (left)
original objects, (right) new objects. Bottom row: (a) original objects (b) parti-
tioning into smaller objects, (c) clustering step, (d) repartitioning to avoid uneven
clusters. (Image courtesy of Baxter et al. [BSGM02]).

exceptions.

Baxter at al. [BSGM02] developed a method which first partitions the given
geometry into smaller objects based on size, aspect ratios, and polygon count.
Then the algorithm clusters the objects in a bottom-up fashion, using the heuristics
that the Hausdorff distance between objects inside of a cluster should be smaller
than the distance to objects outside of the cluster. In a final refinement step, the
method repartitions the clusters mainly based on their aspect ratio, in order to
avoid clusters with uneven distributions of objects. Refer to Figure 2.6 to see
all stages of the algorithm, which was successfully applied for online visibility
computations. However, it is not obvious how to use the method for optimizing
subdivisions for preprocessed visibility.

Another clustering method for online visibility has been proposed by Korten-
jan and Schomaker [KS06]. The most important idea of their work is that they
construct an object space subdivision so that the nodes of the subdivision main-
tain not only spatial locality but also contain geometry of comparable size.

33



Chapter 2. Related Work

Figure 2.7: Extremal stabbing lines through a series of portals (Image courtesy of
Teller et al. [Tel92a]).

2.4.2 Visibility preprocessing

Once we have a meaningful partitioning into view cells and objects, it is the re-
sponsibility of a visibility preprocessing algorithm to associate the objects with
the view cell from which they are visible and store them in the potentially vis-
ible set (PVS) of the particular view cell. Visibility preprocessing has been an
important topic of research since about 20 years. PVS-based rendering causes
practically no runtime overhead – the only task involved is to locate the current
view cell. Therefore preprocessing was the only practical choice until hardware
occlusion queries became suitable for real time usage, and hence we will discuss
a number of relatively old algorithms in the following which are nevertheless still
of interest. However, the high complexity of from-region visibility makes prepro-
cessing a challenging problem in the general case up to this day. In this survey,
we keep the classical separation into geometric algorithms that compute conser-
vative or exact visibility, and sampling-based algorithms that compute aggressive
visibility.

2.4.2.1 Geometric algorithms

The earliest proposed methods were geometric algorithms that operate in object
space, which means that their complexity is proportional to the geometric com-
plexity of the used models, and they are either exact or conservative in nature. A
non-trivial problem for all geometric methods is the handling of occluder fusion,
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which requires special treatment.

Exact 3D visibility The aspect graph [GM90] is a tool that connects qualita-
tively (i.e., topologically) different 2D views (i.e., aspects) of a polygonal scene.
A change of aspects happens due so-called visual events. The two fundamental
visual events are (a) when the projections of a vertex and an edge coincide and
(b) when the projections of 3 edges meet in a point. It is the dual of the viewpoint

space partition, which encodes the maximal regions with a constant aspect. It is
the finest possible encoding of the view space and is able to answer all visibility
queries, but has the enormously high complexity of n9 in the worst case.

The 3D visibility complex encodes a partition into maximal free line segments

(i.e., the line segments between the extremal points of the bounding objects). The
more lightweight visibility skeleton [Dur99] only encodes the visual events, but
still has a complexity of O(n4). These algorithms are very complex and only of
interest for the analysis of visibility properties.

The duality of shadows and visibility was exploited by Teller et al. [Tel92a].
They compute visibility through a series of convex portals in O(n2) time, using
the notion of antipenumbra, which is just the volume from where a part but not all
of the last in a sequence of portals (which could be interpreted as a light source)
can be seen. The method uses a Plücker space representation to compute the
antipenumbra. A Plücker parametrization of the edges yields hyperplanes that
define a 5D polytope. The polytope is intersected with the 4D Plücker quadric to
find the dual of all extremal stabbing lines (i.e., lines that stab all polygons and
are fixed by four edges) and the corresponding extremal swaths, which are either
planes or quadratic surfaces (refer to Figure 2.7). This idea was later used for
robust soft shadow computation, introducing epsilon visibility [DD02].

All aforementioned algorithms in this section are infeasible for classical vis-
ibility preprocessing in a 3D scene. Bittner [Bit03] proposes the first tractable

solution suitable for small and medium sized 3D scenes. Using a mapping from
primal space to Plücker coordinates, he maintains a compact representation of
the union of the blocker polyhedra in an 5D BSP tree, denoted as occlusion tree.
Several other exact visibility algorithms were proposed that are conceptually very
similar [NBG02, HMN05, MAM05].
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These exact algorithms give valuable insight into the properties of visibility
and are conceptually interesting – at least theoretically one of the oldest prob-
lems of computer graphics has been solved – but they can hardly be extended to
efficiently and robustly handle visibility preprocessing in large scenes. In fact it
was shown that sampling-based algorithms like GVS can compute more accurate
PVSs [WWZ∗06]

Simplification of the problem domain Several papers were proposed that made
simplifying assumptions to reduce the complexity of the problem. These methods
either specialize on a specific scene configuration like indoor or city scenes, or
restrict their methods to solve simple visibility configurations, while accepting an
overestimation of the PVSs.

In the beginning, the authors focussed only on architectural scenes, exploiting
the beneficial cell and portal structure [ARB90, TS91], where the cells are usually
rooms which can see each other only through portals, i.e., doors or windows.
Airey et al. [ARB90] suggest two solution to compute the PVS: an aggressive
algorithm that uses point sampling, and a conservative algorithm that uses shadow
volumes to find the visible objects.

Many authors exploit the predominantly flat nature of some scenes like, e.g.,
city scenarios or terrains, and reduce the problem complexity to so-called 2.5D
visibility [WWS00, BWW01, KCCO01, BWW05]. The 2D algorithm of Wonka
et al. [WWS00] shrinks occluders to enlarge the valid range of from-point visibil-
ity to areas within an ε environment around a point sample. Occluder fusion can
be handled by testing objects against the joint umbra of shrunk occluders.

Later several algorithms have been proposed that can handle 3D outdoor sce-
narios [COFHZ98, LSCO03, DDTP00, LSCO03]. With the exception of the al-
gorithm of Cohen-Or et al. [COFHZ98], all these algorithms support occluder
fusion, mostly based on merging separate occluder umbrae into a larger conjoint
umbra. Unfortunately, they rely on occlusion mostly due to larger occluders close
to the view cell, and can be arbitrarily wrong in terms of PVS size overestimation.

Cohen-Or et al. [COFHZ98] use a rectangular grid of view cells. An object A

is called a strong occluder of another object B if it occludes B from every point on
a view cell, in other words, B fully lies in the umbra of A as induced by the view
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Figure 2.8: (left) Extended projections use the intersection of occluder projections
and the union of occludee projections for conservative per-view cell visibility.
(right) The green triangle can be culled using occluder fusion (Image courtesy of
Durand et al. [DDTP00]).

cell. The methods searches a single strong occluder for each view cell and object.
Casting a ray from every vertex of the view cell to every vertex of the polyhedron,
they list every object intersected by the ray as potential occluder. An object is a
strong occluder iff the intersection of these sets is non-empty.

Extended projections [DDTP00] are conceptually very interesting, as they can
be seen as a generalization of occlusion maps known from image-based from-
point visibility to a per-region visibility problem. The extended projection of an
occluder is defined as the intersection of the projections from any point in a view
cell, while the projection of an occludee is defined as the union of the projections
from any point in the view cell (refer to Figure 2.8), always maintaining con-
servativity. Occluder fusion is possible by intersecting the projections of several
occluders. However, the tightness of the PVS is highly dependent on the location
of the projection planes. An occlusion sweep that reprojects the occluder projec-
tion onto a new plane and merges it with new occluders provides an improvement
in some cases.

Leyvand et al. [LSCO03] also use the assumption that due to gravity most
scenes have approximately a 2.5D nature, or as they call it, 3-εD. They factorize a
4D from-region visibility problem into a vertical and a more important horizontal
component. In the horizontal direction they use ray-space factorization, and they
use umbra merging in the vertical direction.

Schaufler et al. [SDDS00] create a discrete representation of the scene in order
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to make visibility computation independent of the scene complexity. They clas-
sify voxels as empty, border (if they contain a boundary), or opaque, and restrict
their method to use the opaque interior of scenes as volumetric occluders. The
method uses blocker extension into adjacent opaque regions to maximize occlu-
sion and constructs shafts between view cell and blockers (i.e., the umbras) that
extend blockers into empty space, allowing efficient occluder fusion. One of the
advantages of volumetric visibility is that it can be used to cull anything that is
completely inside hidden space, including moving objects.

To our knowledge none of the introduced geometric methods can handle all
possible scene configurations. For example, all of them have problems with large
vegetation scenes, which are inherently difficult to process sufficiently well in
terms of both performance and accuracy of the PVSs.

2.4.2.2 Sampling-based algorithms

Many people in the research community considered preprocessed visibility to be
solved after the first tractable exact visibility algorithms had been proposed. How-
ever, these algorithms cannot be applied on large and complex scenes. Many geo-
metric solutions suffer from all kinds of drawbacks, be it performance, accuracy,
tightness of the PVS, or applicability. Due to their robustness and simplicity, game
studios have been using primitive sampling-based algorithms instead of geomet-
ric methods for years, and there was a huge gap of available scientific algorithms
and the demands of the industry. Hence sampling-based algorithms that sample
ray space very densely got renewed attention in the scientific community in re-
cent years, with the main focus on more intelligent sampling strategies. These
algorithms are inherently aggressive or approximate in nature.

The conceptually simplest idea is to shoot random rays from a view
cell [ARB90, SGwHS98]. In order to reduce the complexity of the prob-
lem domain by one dimension, it is beneficial to first sample the boundary
of the view cell with points and then sample visibility from each of these
points [LH96b, Stu99]. Recent algorithms try to address the question on how
to best position new samples based on visibility information from previous sam-
ples [Pit99, GSF99, WM03, NB04b, WWZ∗06]. We describe the algorithm of
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Figure 2.9: GVS [WWZ∗06] uses two powerful techniques: (1) Adaptive-border
sampling mutates the end point of a successful ray to find new triangles in the
neighborhood. (2) Reverse sampling mutates the starting point of a ray so that it
goes through the predicted end point shown in yellow (Image courtesy of Wonka
et al. [WWZ∗06]).

Wonka et al. [WWZ∗06] as an example for this class of algorithms, that uses
rather simple but very efficient concepts for intelligent sample placement.

Guided Visibility Sampling (GVS) GVS [WWZ∗06] accelerates the computa-
tion of a triangle-based PVS from a view cell by sampling only a subset of ray
space. The algorithm avoids sampling triangles that have already been found or to
sample empty space, and concentrates on sampling the unexplored border regions
and gaps instead.

GVS starts all samples from the borders of a view cell. It initially casts a cer-
tain number of random samples into the scene. If such a sample successfully finds
a new triangle, it is used as seeding ray for subsequent ray mutations. The effi-
ciency of the algorithm comes from only two different ray mutation techniques,
adaptive border sampling, and reverse sampling. Adaptive border sampling ex-
ploits the connectivity of meshes. It searches the border of newly found triangles
within some ε environment for more triangles by mutating the end point of a suc-
cessful ray (see Figure 2.9 (1)). If the algorithm detects a discontinuity by com-
paring the end point of the current ray to the predicted end point, it uses reverse
sampling to explore the gap. It mutates the starting point of the current ray so that
it goes through the predicted end point, which is just the intersection of the current
ray with the plane of the triangle hit by the previous ray (see Figure 2.9 (2)).

GVS computes a very accurate PVS in the range of a few seconds per view cell
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for large models like the Powerplant. The method is also very memory efficient,
and no complicated auxiliary structure is required for the algorithm itself, only
the current PVS as well as a buffer containing the candidates for ray mutation to
indicate the current state of computation.

Until now all introduced methods compute visibility only for a single view
cell at a time, and timings in the papers are usually only given for computation
of a single view cell. However, in practice we have to deal with several thousand
view cells per scene, hence there is a large multiplicative factor involved when
estimating the time it takes to compute a full visibility solution for all view cells.
If the PVS differences between neighbouring view cells are small, then such a
visibility algorithm is highly inefficient.

Laine et al. [Lai05] were the first who exploit the high degree of coherence be-
tween view cells, by propagating visibility over view cell borders towards neigh-
bouring view cells. The algorithm has been verified to work in combination with
different types of visibility solvers. The authors showed how to create a directed
graph that allows unambiguous propagation of visibility between view cells with-
out creating loops.

Adaptive Global Visibility Sampling (AGVS) AGVS [BMW∗09] fully ex-
ploits spatial coherence between view cells using a powerful global sampling
approach, and allows progressive refinement of the visibility solution. AGVS
was the first full fledged PVS computation algorithm which exploits global sam-
pling [MBW06] for their use. In order to compute visibility for all view cells at the
same time, the method creates maximal free line segments between two objects.
The objects are then are added to the PVSs of all view cells that are intersected by
the segments.

The authors propose a number of efficient global sampling strategies. They
distinguish between so called static and stochastic sample distributions. Static
sample distributions denote random sampling schemes that do not depend on the
success of recent samples. Examples for static sample distributions are: a point-
direction distribution, which defines a sample with a point in view space and a
direction, or a point-point distribution, which defines a sample with two points in
view space. The latter strategy is suited for scenes that are not uniformly shaped,
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Figure 2.10: The AGVS algorithm [BMW∗09] uses a two-point mutation which
shifts the end points of a ray according to a Gaussian distribution (Image courtesy
of Bittner et al. [BMW∗09].

like more or less all city scenes that have relatively small extent in the vertical
direction compared to the other dimensions.

Stochastic sample distributions are based on the mutation of successful rays,
which are those that bring a new contribution in form of a new PVS entry. A
number of successful rays are stored in a mutation buffer and subsequently used
to drive the mutations. AGVS uses 3 types of ray mutations: (1) The two-point
mutation is the simplest but probably most powerful technique that mutates the
end points of a ray segment according to a Gaussian distribution, as shown in Fig-
ure 2.10. (2) Silhouette rays use fast rejection sampling to find the silhouettes of
objects. (3) Reverse sampling mutates only the origin of rays. Note that the latter
two techniques have their deterministic counterparts in the GVS algorithm. Ray
distributions are chosen with a probability proportional to their average contribu-
tion.

AGVS computes visibility on a per-object granularity, because all view cells
are processed in parallel, and it is impossible to keep the visible triangles in mem-
ory for all PVSs at the same time. The fact that object-based visibility is slightly
more conservative than triangle-based visibility is not a big drawback, because it
is inefficient to render single triangles anyway. AGVS has been shown to compute
a full visibility solution several times faster than other methods. In our experience,
the stochastic sampling strategies of AGVS are more robust than the deterministic
strategies of GVS. Moreover, GVS might spend a long time on a single view cell
if the termination criteria are set too tight, while the progressiveness of AGVS
allows much better control over the appropriate time for termination.
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Figure 2.11: Interactive visibility analysis with the AGVS algorithm. (left) A
view cell in the Pompeii scene. (middle) A visualization of the render cost in the
view cells that are on the same level as the current view cell (warmer colors mean
higher cost). (right) Over the roofs we have so called visibility hotspots with very
high render cost (Image courtesy of Bittner et al. [BMW∗09])

Due to its progressiveness the method is not restricted to merely using the
final solution for standard visibility culling. It can be used for interactive render
cost analysis, as it is possible to get a quick preview of global visibility within
some seconds (refer to Figure 2.11). In order to use AGVS for interactive scene
editing, the visibility changes after an edit (e.g., an object insertion or removal)
must be incorporated as efficiently as possible. Hence the method recomputes
visibility only for those objects that potentially changed their status from visible
to invisible. As newly inserted objects can act as an occluder, shadow volumes are
constructed for all view cells to find and locally invalidate PVS entries that lie in
the umbra of a new object. Finding objects that are newly visible is conveniently
handled by the ray mutations that automatically focus on the regions of change.

GPU sampling Several conservative and aggressive methods exploit the raster-
ization capacities of the GPU to efficiently sample visibility in a regular fashion.

The algorithm of Nirenstein et al. [NB04b] is especially designed for effi-
cient GPU-based sampling. The method samples the visibility from view cell
borders with hemicubes. In order to adaptively increase the sampling density in
undersampled regions, they use hierarchical subdivision. The decision for further
subdivision is based on the visibility discrepancies of corner samples, as can be
seen in Figure 2.12. However, this approach is inherently prone to miss small
features that are not captured by the coarser sampling, and has indeed been shown
to miss many visible triangles [WWZ∗06] in practice. Also, such a brute force
GPU-based approach has the disadvantage that the complexity scales linear with
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Figure 2.12: 2D visualization of the algorithm of Nirenstein et al. [NB04b]. The
method computes visibility with hemicubes and adaptively subdivides the sam-
pling domain based on the PVS differences of the 4 corner samples (Image cour-
tesy of Nirenstein et al. [NB04b].

the scene size. It is a question if GPU sampling can be used to accelerate more
sophisticated sampling-based algorithms like AGVS because of various potential
problems, e.g., how to incorporate stochastic sampling, or how to overcome the
limits of the texture memory in very large scenes.

GPU-based rasterization is also used to accelerate several conservative algo-
rithms, where a pixel is seen as small subset of the ray space, and occlusion is re-
ported only if the whole subset of rays is blocked [WWS00, KCCO01, LSCO03,
DDTP00]. These methods are not able to handle complex visibility configurations
induced by many occluders within such a pixel, and require a single occluder or a
fused occluder that blocks all rays.

Eisemann et al. [ED07] propose an algorithm that exploits the bitwise arith-
metic abilities of modern graphics hardware with DirectX10 for computing the
visibility between two patches entirely on the GPU. The method traverses all tri-
angles, backprojects them on the light source from the receiver point, and keeps
track of the number of light source samples that are occluded. Using a bitmask,
the algorithm efficiently determines how many light source samples are to the left
of each of the 3 oriented triangle edges, which means that they are occluded. The
approach can be used for a range of applications, for example soft shadow render-
ing. It is physically more correct than state-of-the-art methods like single sample
soft shadows [GBP06], and free of typical single-sample artifacts. However, it
is significantly slower performance-wise, and hence infeasible for real-time shad-
ows. The most promising application of this technique is visibility analysis in
games (which is also the reason why we listed the method among the prepro-
cessing algorithms in this survey). Using this functionality, a game designer is
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Figure 2.13: The method of Eisemann et al. [ED07] allows interactive visibility
analysis. Two unblocked shafts of rays are visualized. The close-ups show that
visibility is accurately captured (Image courtesy of Eisemann et al. [ED07])

able to interactively detect visibility leaks through which objects become visible
that shouldn’t, causing frame-rate drops or line-of-sight problems that change the
gameplay in an unwanted way. Figure 2.13 shows an example of such an assisted
visibility analysis.

2.4.3 Online occlusion culling

In this section we investigate algorithms for online occlusion culling. These algo-
rithms do not require a lengthy preprocessing step, are potentially more accurate
than preprocessing as they compute visibility from a point, and can handle fully
dynamic scenes. Most online culling algorithms operate in image space, hence
they naturally support occluder fusion due to rasterization. They are mostly con-
servative in nature, using simple proxy geometry like bounding boxes to query the
visibility of the actual geometry, and rely on the z-buffer [Cat75] to resolve the
final visibility. Only some methods exist which compute approximate or conser-
vative visibility.

The hierarchical z-buffer algorithm [Gre94] uses a 2-fold hierarchy to reduce
the number of depth comparisons of the classical z-buffer. This method subdivides
the object space into an octree hierarchy, and utilizes a z-pyramid for the depth
test, which is a quad-tree hierarchy that has the original z-buffer as finest level, and
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each of the higher levels stores the farthest z-value of its 4 children. The octree
is traversed in front-to-back order, and its nodes are tested hierarchically against
the z-pyramid. If the closest z-value of a polygon is still farther away than the z-
value of the current pyramid entry, it is ensured that none of its fragments can be
visible, and the node can be culled. This clever algorithm introduces the important
concept of hierarchical culling, but suffered from missing hardware support.

Hierarchical occlusion maps (HOM) [ZMHH97] are somewhat similar to the
hierarchical z-buffer, as they also tests objects against an image hierarchy. The
HOM algorithm makes use of the optimized texture mapping and downsampling
functionality of modern graphics hardware for efficient approximate culling. To
determine visibility of an object, this method performs both an overlap test and
a depth test. First an object is tested against an occlusion map for overlap with
occluders. If the object is positively tested for overlap, it is subsequently tested
against a so called depth estimation buffer, which conservatively estimates the
occluded depth using the farthest z-value of an occluder. An occlusion map is a
grayscale image that is part of an occlusion pyramid. The pyramid is created by
rendering a number of occluders into such an occlusion map, and then using the
downsampling functionality of the GPU to build the other levels. These grayscale
images can then be used for approximate culling with an alpha threshold. The al-
gorithm is historically important and contributed valuable ideas, like the efficient
generation of the occlusion maps using texture hardware. However, in my opin-
ion it became more or less outdated since the introduction of hardware occlusion
queries.

Approximate culling is also used by a class of methods known as stress culling
in the literature [Won01]. These methods aim to render in the best quality pos-
sible while staying within the constraints of a given rendering budget, like the
Prioritized-Layered Projection (PLP) algorithm [KS00]. This algorithm priori-
tizes geometry based on its so called solidity value, which corresponds to the like-
lihood of being occluded. Next the method simply renders the geometry ordered
by their priority until a certain memory budget is reached. While the original al-
gorithm does not bother to fill up the holes that appear due to their aggressive
culling, a conservative extension of the algorithm exists [KS01].

N-Buffers are an interesting data structure proposed by Décoret et al. [Déc05].
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Figure 2.14: Example of n-buffers [Déc05] (1) Level 0 is the depth buffer. (2)
Level 1 stores the maximal values of 2x2 pixel neighborhoods in the depth buffer
(e.g., the highlighted entry corresponds to the pixels in the red box in level 0). (3)
Level 2 stores the maximal values of 4x4 pixels (e.g., magenta box). (4) Likewise,
level 3 for 8x8 pixels (e.g., yellow box) (Image courtesy of Décoret et al. [Déc05]).

A couple of depth maps are stored similar to an image pyramid or mip-maps, but
with the difference that all depth maps have the same size. The pixel (x,y) of the
depth map of level i stores the maximum depth value of a 2ix2i neighbourhood of
pixels. An example of n-buffers can be seen in Figure 2.14. A rectangular region
is queried against the level with the smallest i where the pixel neighbourhood
corresponding to an entry fully contains the region. According to the authors, the
projection of any object can be covered reasonably tightly with 4 power-of-two
squares. Hence, an object of any size and orientation can be queried for visibility
with a constant overhead of 4 lookups into the occlusion maps.

N-buffers have larger memory requirements than mip-maps, but they are more
flexible, and were successfully used in different applications, e.g., for blocker
search in soft shadow rendering [SS07]. When used for occlusion culling, n-
buffers require significantly less depth comparisons than conventional occlusion
query based approaches. However, n-buffer queries are still slower than conven-
tional occlusion queries on current GPUs, and considerably more conservative.

Geometric from-point algorithms Recently there has been renewed interest in
this kind of algorithms, with applications mainly in computing the propagation
of sound, where any sampling error due to the insufficient resolution of an image
space algorithm leads to disturbing artifacts. As occluder fusion is difficult in ob-
ject space, the algorithm of Chandak et al. [CATM09] subdivides the view frustra
of the point light sources and adjusts the far plane of the sub-frustra if they are
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Figure 2.15: The conservative from-point algorithm of Chandak et al. [CATM09]
subdivides the view frustrum, and adjusts the far plane of the sub-frustra if
there is a single occluder that fully blocks them (Image courtesy of Décoret et
al. [CATM09]).

blocked by a single strong occluder. The blocker is computed using simple and
efficient intersection tests in Plücker space.

The algorithm is significantly faster than previous geometric algorithms, and
the authors state that their method is superior to image-based approaches in the
context of sound rendering because of the greater accuracy and guaranteed error
bounds, and that rasterization requires up to 32 x 32K resolution to achieve ac-
ceptable quality in scenes like the Powerplant. On the downside, the algorithm is
still slower than methods based on rasterization. Furthermore, it is unclear how
conservative the algorithm is, as concave occluders are not identified as blocker
in order to keep the computations fast and simple. Hence it is a question if such
an algorithm can be useful for online occlusion culling in the future, consider-
ing the fact that conservativity is not a requirement for online occlusion culling
algorithms. For online occlusion culling, image-space algorithm using hardware
occlusion queries have the advantage that they naturally sample the image space
in exactly the necessary granularity.

2.4.3.1 Algorithms using hardware occlusion queries

Hardware support An OpenGL extension for occlusion queries was first sug-
gested by Bartz et al. [BMH98]. Such an occlusion query returns the number of
visible pixels of the primitives sent between a start and end tag, without requir-
ing any readback. The first attempt for a hardware implementation came with the
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HP_occlusion_test extension, which was still pretty useless in retrospect,
because it was slow and involved long waiting times for the query to finish. Later
NV_occlusion_query was introduced which subsequently evolved into the
official ARB_occlusion_query extension [cor]. It has the important func-
tionality to test if a query result is available, which is essential to avoid idle time
in the CPU when waiting for the query to return.

There is a relatively new extension called NV_conditional_render

which renders geometry conditionally based on the result of an occlusion query
without intervention of the CPU. It has an additional parameter that determines if
the hardware should be forced to wait for the query to finish before rendering or
not [cor]. However, to our knowledge there is no scientific paper that explicitly
uses this quite elegant functionality up to now.

Before dedicated hardware support for occlusion queries existed, online occlu-
sion culling was mostly considered too costly for practical use, with some notable
exceptions like the software based dPVS system from Aila et al. [AM04]. Only
after the introduction of hardware accelerated occlusion queries, the potential of
online occlusion culling gained the attention of both the research community and
the industry, and opened the field for a variety of algorithms [KS01, HSLM02,
GSYM03, SBS04, KS05]. However, the queries still come with a non-negligible
cost, and algorithms have to find a way to use the latency until the result returns
in a meaningful way. A naive hierarchical implementation which waits for the
query result at each node before further traversing a hierarchy can actually slow

down rendering significantly due to the idle time of GPU and CPU – this is where
temporal coherence comes into play.

Temporal coherence The Coherent Hierarchical Culling (CHC) [BWPP04] al-
gorithm utilizes temporal coherence to avoid the idle time. The CHC algorithm
traverses nodes in a front-to-back order. Nodes that were visible in the last frame
are still assumed visible in the current frame and vice-versa. Hence we always
wait for the query result of a previously invisible node. Likewise, previously visi-
ble nodes are always rendered in the current frame. In the original CHC algorithm
a query is always issued for previously visible nodes, but we do not wait for the
result. Only when the query returns and the result is available we use it for the
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Figure 2.16: In this visualization of a view in the Powerplant (left), the green
nodes correspond to successful queries, the red nodes to wasted queries, while
the blue nodes indicate that no query has been issued at all. The original CHC
algorithm (middle) wastes many queries, while the NOHC algorithm (right) can
avoid most of the overhead on the NVidia Geforce5900 card (Image courtesy of
Guthe et al. [GBK06]).

visibility classification in the next frame. For this purpose the pending queries are
managed in a dedicated query queue. Fortunately, graphics hardware provides a
cheap way to test if a query result is available. This way, both CPU and GPU are
kept busy while waiting for query results. One major drawback of this algorithm
is that too many queries for previously visible nodes are issued. Therefore the
authors suggested to test previously visible nodes only every number of frames.

As can be seen in Figure 2.16), a problem of the original CHC algorithm is
the high number of wasted occlusion queries (i.e., queries that report an object to
be visible or queries that are more costly than rendering the node itself), which
induce an significant overhead and make CHC clearly slower than view-frustum
culling for view points where most of the scene is visible. The Near Optimal

Hierarchical Culling (NOHC) [GBK06] algorithm computes the probability that a
node will stay visible based on a statistical model of the estimated screen coverage
due to objects rendered previously in the current frame. The expected value for
accumulated screen coverage cscr after i+1 rendered objects is computed as

cscr(Oi+1) = cscr(Oi)+(1− cscr(Oi))c(Oi), (2.7)

where C(Oi) is the estimated screen coverage of object Oi. The feasibility of
a query is then decided using a sophisticated cost model that takes the probability
that a node is still visible into account, and weights it with the cost of a query ver-
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sus the cost of rendering an object. These quantities are measured during an offline
hardware calibration step that samples different parameters like time required for
rasterization or time required for transformation. Note that, this calibration model
still does not take the complex interaction of queries and objects during rendering
into account, and the fact that much of the overhead of a query is caused by state
changes that happen during this interaction.

Algorithms like CHC or NOHC induce a radical change of the inner loop of
any rendering engine, and a fast and robust integration into an existing engine
is usually not trivial. Most modern rendering engines aim to minimize the state
changes – first the visible objects are collected in some sort of render queue, then
their patches (i.e., entities consisting of the same material) are sorted by material,
and at last the content of the render queue is rendered at once using a single API
call.

Instead, these algorithms require an approximate front-to-back rendering, and
interleave rendering and querying to reduce the query latency. This constraint im-
poses a completely different ordering of renderable objects and prevents effective
material sorting. One possibility is to impose a depth pass before the actual ren-
dering pass. Depending on the hardware, this two-pass approach could be slower
than one-pass rendering. Furthermore, the interleaving requires one API render-
ing call per rendered node of the hierarchy. This is not the intended usage, thus
potentially causing a huge software overhead, especially for scenes with many
visible nodes. It is therefore highly scene dependent if the benefit of occlusion
culling outweighs the cost, which is a situation that seriously reduces the value
of the occlusion culling algorithm, and will be addressed by our new improved
algorithm in Chapter 4.

2.4.4 Hybrid rendering systems

In the following we describe methods that combine visibility culling with other
real-time rendering techniques like IBR or LODs in an interesting, non-trivial
way.
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Figure 2.17: DoubleEagle tanker with 82M triangles rendered with the GigaWalk
system [BSGM02] on an SGI station with 3 300 MHZ CPUS and 2 IR2 GPUS
(Image courtesy of Baxter et al. [BSGM02]).

2.4.4.1 Massive model visualization

Very complex scenes cannot be handled by visibility alone. Some systems com-
bine visibility culling with an image-based or polygonal simplification of the
model representation. Dealing with highly complex scenes additionally requires
some kind of out-of-core prefetching mechanism.

One of these systems is the well-known GigaWalk system [BSGM02]. Us-
ing a combination of conservative occlusion culling, either traditional or hierar-
chical LODs, load balancing between both CPUs and GPUs, and a novel object
clustering scheme, this system managed to render complex environments like the
Powerplant or the DoubleEagle Tanker shown in Figure 2.17 at real time frame
rates back in the year 2002. However, it requires significant preprocessing times
to establish the object hierarchy and to compute the LODs.

Gobetti et al. [GM05] presented a system for out-of-core rendering of very
large data sets at interactive rates. During preprocessing, they generate a coarse
binary space partition of the triangle soup. The inner nodes contain a volumet-
ric representation consisting of a number of cubical voxels, which are visibility-
aware volumetric approximations of the particular part of the scene when viewed
from a distance. The approximations are created by sampling the full resolution
dataset. During runtime, the system applies online culling with hardware occlu-
sion queries. For distant parts of the scene it renders the volumetric approxima-
tions of the geometry together with a dedicated parametric vertex program.

Another system for visualizing large data sets was proposed by Brüderlin et
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al. [BHP07]. Independent of Bittner et al. [BWPP04], they invented an algorithm
that uses temporal coherence and interleaves rendering and querying. For geome-
try that is sufficiently far away they simply switch to point-based rendering. This
simple but powerful system can render many instances of the Boeing model with
billions of triangles in interactive time.

2.4.4.2 Visibility-based simplifications

Recently a number of algorithms were proposed that use visibility properties to
choose a proper LOD representation or image-based representation.

Andujar et al. introduced the concept of Hardly Visible Sets [CAB00] (HVS).
They propose two metrics describing the perceptual degree of visibility of an ob-
ject, one based on absolute accumulated size of the visible regions, one based on
the maximal size of connected visible regions. These metrics controls the used
LOD level. Although no user study is given, the second metric seems to be more
useful, because of the greater perceptiveness of the human visual system to errors
in connected regions.

Drettakis et al. [DBD∗07] proposed an algorithm that controls level of detail
based on perception. The methods takes masking into account when choosing
the LOD level, utilizing the fact that high frequencies caused by e.g., foliage, or
high contrast shadows, will prevent the user to perceive the differences between
the original geometry and the simplified geometry. According to their user study,
the result of their pipeline is consistent with what users perceive. However, the
computations of the so called threshold maps impose a huge overhead (by defini-
tion they require to render the original model as a comparison), which makes the
algorithm infeasible for most real-time applications.

Charalambos et al. [CBWR07] modified the CHC algorithm [BWPP04] for
efficiently choosing the appropriate HLOD [EMWVB01] level based on the visi-
bility of the node. Their metric just takes the number of visible pixels into account,
hence important visual properties like the connectivity of the visible pixels cannot
be evaluated.
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Figure 2.18: Visualization of a forest scene using the method of Erez et al. (Image
courtesy of Erez et al. [SLCO∗04]). The red areas correspond to the visible parts
of the impostors.

2.4.4.3 Complex vegetation scenes

A challenging class of scenes for any rendering system are large vegetation scenes,
like forests. Using only binary visibility for extremely complex foliage scenes is
difficult because of two reasons, 1) the complex, mostly unconnected geometry
is a nightmare for most visibility methods, including sampling-based methods,
2) many trees are still visible only through small holes. The survey of Mantler
et al. [MTF03] shows that many methods for rendering large vegetation scenes
use non-polygonal representations for the trees like billboards or volume tex-
tures [DN04]. The method of Erez et al. [SLCO∗04] exploits the property that
many trees can be seen only through small holes for visibility-based simplifica-
tion. They test the visibility of the trees against an occlusion buffer using occlu-
sion queries. If a tree is tested to be visible, a slight overestimation of the tree
is used to update the occlusion buffer, while the tree is rendered in full geome-
try. The trees that are tested to be invisible in the occlusion buffer are classified
as background and rendered with impostors. The impostors can only be visible
through small holes due to the slight overestimation of occluders, hence the typi-
cal parallax error of impostors is almost not noticeable. Figure 2.18 shows that the
visible parts of the background are consists mostly of unconnected image noise,
hence filling them up with impostors is sufficient. In a real forest scene, most trees
and trunks can be considered as background, and the savings can be significant.
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2.5 Visibility computations for realistic lighting

The biggest bottle neck to in order to achieve realistic lighting in real time is to
solve the visibility queries fast enough. In this section we investigate different
categories of algorithms that compute realistic lighting effects, and focus on their
handling of complex visibility interactions. First we discuss shadow algorithms
for direct illumination, then global illumination algorithms, and at last ambient
occlusion algorithms, which yields a relatively cheap approximation of the ap-
pearance of full-fledged global illumination.

2.5.1 Shadow algorithms

Direct illumination produces either hard shadows in case of a point or directional
light source, or soft shadows in case of an area light source. The problem areas of
shadow computation have a direct relationship to the problem areas of visibility
culling. This becomes apparent when comparing the terminology of these two
fields. E.g., in from-region visibility for visibility preprocessing we speak of the
penumbra of an object as induced by a view cell, while hard shadow maps can
be resolved with a single from-point visibility query. A huge body of papers
have been proposed that cover hard shadows for real-time rendering, which fall
either into the category of shadow mapping [Wil78] or shadow volumes [Cro77].
While shadow volumes are the more accurate technique, shadow maps received
more attention in recent years because of their greater efficiency and flexibility
(they also work for alpha-mapped and bump-mapped geometry), and they are
also extensively used in real time global illumination algorithms. The biggest
issue of hard shadow maps are aliasing effects due to the discretization process,
which can be separated into perspective error and projection error. Most recent
papers deal with reducing aliasing to improve the shadow quality. Perspective
shadow mapping techniques [LGQ∗08, WSP04] greatly improve the visual quality
compared to uniform shadow maps by distributing the shadow map resolution
better. As a single shadow map does not give sufficient resolution in all cases,
various techniques have been introduced that aim to improve shadow quality with
multiple shadow maps, using either view-frustum slicing [ZSXL06], or automatic
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shadow partitioning with an error threshold [FFBG01, GW07]. Other methods
reduce anti-aliasing by filtering the results of the shadow tests using percentage
closer filtering [RSC87] or by pre-filtering the shadow maps [DL06, AMB∗07].

Another huge body of work has been dedicated to the rendering of soft shadow.
A slightly outdated survey of soft shadow algorithms was proposed by Hasenfratz
et al. [HLHS03], which still delivers a good overview of algorithms based on
both shadow maps or shadow volumes, and provides a useful classification of soft
shadow methods according to their properties, from slow and physically based to
plausible and fast. Fernando proposed a cheap and robust technique that approx-
imates soft shadows with a variable sized percentage closer filter kernel [Fer05].
Many of the recently developed soft shadow algorithms are based on backprojec-
tion [GBP06, GBP07, SS07, BCS08]. These methods are GPU friendly, as they
use a single shadow map to represent a discrete approximation of the occluders
between shaded point and light source. To evaluate the percentage of the light
source that is blocked, these methods search for occluders in the shadow map and
backproject them onto the source. For small light sources they achieve almost cor-
rect shadows, while large light sources with big penumbrae negatively influence
performance and cause visual artifacts. Physically correct shadows in dynamic
scenes with arbitrarily shaped dynamic light sources are still not feasible in real
time.

2.5.2 Real-time global illumination

Convincing real-time dynamic global illumination with both diffuse and glossy
materials is one of the major goals left in 3D computer graphics research. The
bottle neck lies in the required number of visibility queries – it is necessary to
have hundreds or thousands of queries per frame in order to compute convincing
global illumination. Recently a lot of progress has been made, and renderings like
Figure 2.19 are possible in interactive to real-time frame rates. In the following we
investigate how various methods aim to approximate the rendering equation 1.3.1,
and focus on their way to resolve the visibility interactions.

Precomputed radiance transfer (PRT) [SKS02] allows dynamic per-vertex re-
lighting for static scenes lit from an environment map. The method makes use
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Figure 2.19: Oriental room rendered with real-time global illumination using im-
plicit visibility and antiradiance [DSDD07] (Image courtesy of Dachsbacher et
al. [DSDD07]).

of the property that the outgoing radiance computation can be separated into in-
cident light and a transfer function (i.e., the cosine weighted visibility function
over the hemisphere), which maps the incident light to outgoing radiance and can
be precomputed. By projecting both source radiance as well as transfer func-
tion into the spherical harmonics basis, the outgoing radiance can be evaluated
on the GPU with a simple vector dot product between coefficient vectors. Also,
the visibility functions can be compressed to reasonable data sizes. The work of
Sloan et al. [SKS02] spawned a long list of follow up papers. Some investigate
the usage of different basis functions like non-linear wavelets [NRH03], which
allow higher frequency shadows but are more difficult to evaluate. Lehtinen et
al. [Leh07] present a general framework for developing finite-element methods
that can use precomputed light transport. On the downside, PRT methods have
considerable preprocessing and storage cost, and only low frequency lighting can
be computed efficiently in real time. In the rest of this survey, we concentrate on
more dynamic methods that require less preprocessing, which we believe to be the
future direction for real-time global illumination.

Many of the following methods use a deferred shading pipeline [ST90, Shi05].
A deferred shading pipeline stores pixel properties like colors, normals, depth, or
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positions in separate buffers, called G-buffers, and uses them to compute the final
shading in a separate screen-space step. The advantage of deferred shading lies in
the fact that the shading complexity can be decoupled from the scene complexity.
As the performance depends mostly on the size of the used render target, it is a
common practice to compute the low frequency indirect illumination separately
in a lower resolution render target and upsample it later on.

Dachsbacher and Stamminger [DS05] use only a single reflective shadow map

from the light source to capture the surfaces that cause indirect illumination, mak-
ing the crude simplification to completely ignoring visibility between indirect
light source and receiver pixel for the sake of performance. Each texel in the
shadow map is treated as a diffuse light source, storing flux information as well as
surface normal. In a screen space pass the method computes the incident indirect
illumination at each pixel by gathering the nearest pixel lights in the shadow map,
and weighting their contribution to the illumination with the squared distance to
the currently shaded pixel. Later Dachsbacher and Stamminger [DS06] devel-
oped an improved version of this algorithm, which uses importance sampling to
select a subset of point lights on the shadow map, and distributes their indirect
illumination by splatting variably shaped kernels. To limit the fill rate during ac-
cumulation of the light contribution, they fit the size and shape of the kernels to
match the power and the shape of the light sources. Both methods using reflective
shadow maps achieve real time frame rates for standard game scenes. The splat-
ting approach is faster and can handle caustics quite well. However, both methods
are prone to flickering artifacts and drastically simplify global illumination by
ignoring visibility.

Instant radiosity [Kel97] is a technique that is well suited for global illumina-
tion on the GPU. This method shoots random light paths from the light source,
and creates virtual light sources (VPLs) at the intersections with geometry to sim-
ulate the indirect light bounces. In comparison to reflective shadow maps, instant
radiosity takes visibility into account by determining the contribution of each VPL
to the current view with paraboloid shadow maps (as can be seen in Figure 2.20),
which allows fast visibility queries on the GPU. Because of its GPU-friendliness
the algorithm became very popular, and several variations of the original algo-
rithm have been proposed since, which all reach interactive to real-time frame
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Figure 2.20: (left) Instant Radiosity shoots paths from the light source, and cre-
ates virtual point lights at the intersection with geometry. (middle) Using shadow
maps, the visibility of each VPL and their contribution to the current image is
determined. (right) Temporal coherence: When the view point or light source
moves, only one of the VPLs becomes invisible and has to be invalidated, while
all the others can be reused. (Image courtesy of Laine et al. [LSK∗07]).

rates [SIP06, SIP07, LSK∗07, RGK∗08].

The performance of these algorithms can be significantly improved with in-

terleaved sampling [KH01, SIMP06]. The original idea was to create irregu-
lar sampling patterns out of several interleaved hardware-friendly regular pat-
terns [KH01]. The technique can be used to interleave VPL computations, and
assign a separate set of VPLs to each sub-buffer, exploiting the fact that it is suffi-
cient to compute low frequency indirect illumination in lower resolution without
noticeable loss of quality. Hence a number of lower resolution images of the scene
are rendered into sub-buffers, each with a small offset. In case that the offsets are
regular, we obtain nxm regular sampling patterns for each pixel of the output im-
age, where each pixel within such a pattern has a different set of VPLs. Segovia
et al. [SIMP06] propose a two-pass algorithm to efficiently compute these inter-
leaved sampling patterns in a deferred shading pipeline. In the first step they rear-
range the full sized image into the nxm sub-buffers by using divisions and modulo
operations. Now there is coherent access to all pixels that use the same VPLs,
and the method can efficiently perform the shading computations on each of these
sub-buffers in parallel. Afterwards the method gathers the shaded pixels again
with the reverse operation, and computes the output pixels using a discontinuity
buffer and a Gaussian blur filter.

Laine et al. [LSK∗07] exploit temporal coherence to reach real-time frame
rates in a variation of the Instant Radiosity algorithm. For the sake of perfor-
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Figure 2.21: (left) Imperfect shadow maps [RGK∗08] utilize a coarse point based
representation of the scene (pink and yellow VPLs use only the pink and yellow
points, respectively). (right) Imperfect shadow maps generated in a single frame.
(top) With and (bottom) without push-pull algorithm for repairing the holes (Im-
age courtesy of Ritschel et al. [RGK∗08]).

mance, the authors restrict their method to compute first bounce indirect illumina-
tion, stating that the first bounce is sufficient for plausible global illumination. The
method queries the validity of the VPLs using a ray caster, and recomputes only
a budget of invalid shadow maps in a frame while keeping the others unchanged
(refer to Figure 2.20). The algorithm uses a 2D Delaunay triangulation to manage
the VPL distribution. The main task of the algorithm is to keep a good distribution
of VPLs in every frame. When choosing the location of new VPLs, they minimize
dispersion, which is computed as the radius of the largest empty circle that con-
tains no sample points. The exploitation of temporal coherence comes with the
prize that changes in the scene are captured with a certain latency, and shadows
cast from dynamic objects are not supported.

A big step into the direction of fully dynamic real time global illumination was
the realization that it is not necessary to compute high-resolution shadow maps
for capturing the mostly low frequency indirect illumination [RGK∗08]. Instead,
a low resolution point representation is used to capture visibility in the scene,
which can be quickly rendered into the shadow maps in this variant of the Instant
Radiosity algorithm, denoted as imperfect shadow maps (refer to Figure 2.21).
Artifacts in the form of holes in the shadow maps are closed with a push-pull
algorithm. Imperfect shadow maps allow computing hundreds of shadow maps at
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Figure 2.22: (a) Conventional light transport (b) Reformulation without geomet-
ric term G that computes explicit visibility, using antiradiance A (negative light)
to compensate superfluous light due to missing occlusion. (Image courtesy of
Dachsbacher et al. [DSDD07]).

interactive frame rates.

As visibility queries are the most expensive part of global illumination, Dachs-
bacher et al. [DSDD07] reformulate the rendering equation to completely avoid
explicit computation of visibility. Instead, they developed a recursive formula that
converges towards the correct lighting solution using the notion of negative light,
denoted as antiradiance. As depicted in Figure 2.22, the rendering equation can
be written in terms of linear operators

L(p,ω′) = E(p,ω′)+(KGL)(p,ω′) (2.8)

where E is the self emmision, K is the reflection operator, and G is the geome-
try operator which computes explicit visibility to find the first surface in direction
ω′. In a number of steps, they reformulate it into the recursive formula

L = E +KU(L−A)

A = JU(L−A),

where A is the antiradiance, U denotes an unoccluded transport operator that
replaces G, and J is a simple go-through operator, which transmits light through
surfaces as if they where transparent. Note that, instead of radiance L, the recur-
sive formula propagates the difference of radiance to antiradiance (L−A). Fig-
ure 2.23 shows the basic idea of implicit visibility: First the scene is lit without
considering occlusion (image 1). Later on the superfluous radiance is subtracted,
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Figure 2.23: 1-5: Convergence of the lighting solution using the algorithm of
Dachsbacher et al. [DSDD07]. Light is alternately added (1, 3, 5) and subtracted
(so called antiradiance, 2 and 4) until converging to an acceptable solution (5).
(REF) Path tracing reference (Image courtesy of Dachsbacher et al. [DSDD07]).

using antiradiance (image 2). Now radiance is underestimated and must be added
again (image 3), and so on, and so forth (images 4 and 5).

The highly optimized GPU implementation is similar to traditional radios-
ity [GTGB84], but they also have to discretizise the directional components of
individual patches to distribute the antiradiance, which in return also allows them
to render glossy BRDFs. For all shown scenarios the method is faster than tra-
ditional path tracing and does not display the typical image noise of path tracing
algorithms (REF method in Figure 2.23). It can render images with the quality of
Figure 2.19 at interactive frame rates. Unfortunately, the high memory require-
ments restrict the method to small and medium sized scenes.

2.5.3 Ambient occlusion

Global illumination techniques are still rarely used in games or other real time
applications. Ambient occlusion (AO), on the other hand, is extensively used in
areas like production rendering [Lan02, PG04], because it is a relatively simple
and cheap shading technique, and it greatly enhances the appearance of a scene

61



Chapter 2. Related Work

Figure 2.24: Stanford dragon rendered with the screen-space ambient occlusion
method of Fox and Compton [FC08].

with soft contact and self shadows, requiring no additional lighting, as can be
seen in Figure 2.24. Ambient occlusion, introduced by Zhukov et al. [ZIK98],
measures the reverse surface exposure. Assuming a perfectly diffuse material and
a perfectly ambient lighting situation, ambient occlusion strips down the lighting
computation to pure integration of the visibility function over the hemisphere, as
can be seen in Equation 1.3.2. It describes the percentage of incident ambient light
on a surface point that is occluded by surrounding geometry (i.e., it corresponds
to quantitative from-point visibility), and is used for shading by modulating the
ambient color of the surface point with it. Thus ambient occlusion is per definition
a perfect example for the computation of qualitative visibility from a point and its
application. From a physical point of view, ambient occlusion could be seen as
the diffuse illumination due to the sky [Lan02].

A byproduct of ambient occlusion is the so called bent normal, which is the
average direction of arriving light [Lan02]. It is computed by averaging over all
unoccluded directions. Using the bent normal instead of the actual normal for
illumination and environment lookups gives a more realistic appearance.

We will first discuss methods that operate in object space, and then methods
that operate in image space, which are also known as screen-space ambient occlu-
sion.
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Figure 2.25: Precomputation of the ambient occlusion field [KL05] of an object.
(left) Spherical cap approximation of the occluded hemisphere due to an object.
(right) The method stores the spherical cap an occluder subtends for a given di-
rection as radial function parametrized by distance r in a cube map centered at the
object (Image courtesy of Kontkanen et al. [KL05]).

2.5.3.1 Object space methods

In recent years several conceptually different approaches have been proposed that
make the online calculation of ambient occlusion in dynamic scenes feasible for
real-time applications. Some object space approaches exist that accumulate ambi-
ent occlusion by distributing the occlusion power of each occluder to all the other
objects in the range of interest [KL05, MMAH07].

The algorithm of Kontkanen et al. precomputes ambient occlusion fields for
each object. More specifically, for each position in a field surrounding the oc-
cluding object, it precomputes the spherical cap subtended by the occluder as
approximation of the occluder. The spherical cap is determined by an average
occlusion direction and a solid angle. To keep the memory requirements low, the
method stores this information as a radial function of the distance r in a 2D cube
map accessed with the direction. After computing the spherical cap, the ambient
occlusion integral can be efficiently evaluated. Figure 2.25 shows the spherical
cap approximation on the left, and the ambient occlusion field lookup using the
direction vector on the right.

The authors suggest two implementations, one loops over all occluders for
each receiver object to accumulate the occlusion, while the second implementa-
tion uses a deferred shading pipeline to loop over all occluders for all receiver pix-
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Figure 2.26: The methods of Ren et al. [RWS∗06] and Sloan et al. [SGNS07])
accumulate the SH visibility vectors of spherical proxies at each receiver point.
Sloan et al. also account for inter-reflections I (Image courtesy of Sloan et
al. [SGNS07].

els. Clearly, the second implementation has the better runtime behavior of O(n) in
the number of objects, while the first variant has O(n2). Malmer et al. [MMAH07]
proposed the same idea as parallel work, but store the occlusion information as
scalar values in a 3D texture instead. The method can be extended to compute
diffuse color bleeding. Both methods have problems to handle overlapping oc-
cluders correctly. Kontkanen et al. suggest to use multiplicative blending, while
Malmer et al. propose the fusion of two spherical caps into a single larger one.

Conceptually similar methods were proposed for the computation of soft shad-
ows [ZHL∗05, RWS∗06, SGNS07], which can also be extended to compute indi-
rect illumination [GJW08]. Zhou et al. [ZHL∗05] precompute the occlusion power
of rigid objects on receiver points in so called object occlusion fields and project
it into the spherical harmonics basis. Likewise, light sources are stored as source

radiance fields, and the authors refer to both as shadow fields. The radiance on
any given receiver point can be calculated as combination of such shadow fields.
As these shadow fields are independent of the position in the scene, the algorithm
is able to handle soft shadows cast by moving objects, illuminated from large en-
vironmental and local light sources. The method accumulates blocker visibility
by calculating the product of occlusion fields Oi:

Op =
n

∏
i=1

Oi (2.9)

where Op denotes the combined occlusion, and Oi is the spherical harmonics
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projection of the visibility function that is 0 if a direction is blocked by object
i, 1 otherwise. Note that, unlike the related ambient occlusion methods [KL05,
MMAH07], this method can account for approximate blocker accumulation, as
spherical harmonics give a low frequency notion of direction. The method is
computationally expensive, because the spherical harmonics product and rotation
are very costly, and feasible only for a couple of objects. For low frequency
shadows, the authors report real-time frame rates. Using a wavelet basis, they can
handle all-frequency shadows at interactive frame rates.

Ren et al. [RWS∗06] avoid precomputation of the shadow fields completely
and support deformable geometry by approximating the geometry with proxy
spheres. Computing the (reverse) visibility function Vi induced by blocker i from
point p (as shown in Figure 2.26) simplifies to

Vi(ω′) =

1, if ω′ · ~d ≥ cos(θi)

0, otherwise.
(2.10)

Occlusion Oi of the visibility vector i is

Oi = 1−Vi = (
√

4π,0, ..,0)−Vi, (2.11)

where the SH vector 1 denotes the constant 1 over a sphere, which has only 1
non-zero component. Their second contribution enormously accelerates blocker
accumulation by using a standard engineer’s trick: They exchange the costly
spherical harmonics product with a sum of log visibility vectors Oi, using the
fact that

n

∏
i=1

0i ≈ exp
n

∑
i=1

log0i, (2.12)

which enables them to move the entire computation onto the GPU. Finally
they obtain the correct result using spherical harmonics exponentiation. In order
to reduce complexity, they organize the blockers in a hierarchy and choose the
hierarchy level based on distance.

Sloan et al. [SGNS07] move the computation of blocker accumulation with
log visibility vectors into image space by splatting sphere proxies on the receiver
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pixels, which gives them a large speedup compared to previous per-vertex ap-
proaches. As can be seen in Figure 2.26, they also account for inter-reflections
between objects by accumulating unshaded radiance from the illumination due to
the environment map. It is sufficient to compute the low frequency indirect illu-
mination in smaller resolutions and use bilateral upsampling [ED04, BSD08] to
combine it with the final image. On a GeForce 8800, they achieve real time frame
rates in low resolutions of maximal 256x256 for scenes with about 6000 vertices.

Bunnell [Bun05] proposed an interesting per-vertex ambient occlusion method
for dynamic scenes. It is a finite element method with resemblance to hierarchical
radiosity, but is much faster because it avoids explicit visibility queries. Also, it
accounts for approximate occluder overlap, unlike many other ambient occlusion
algorithms [KL05, MMAH07] using a multipass approach.

The method assumes geometry to consist of spherical elements that are cen-
tered around the vertices, with a normal and an area, that is approximately 1/3
the area of the triangles incident to the vertex. The front faces emit and reflect
light, while the back faces transmit light and cast shadows. For every element,
the algorithm computes how much solid angle of the hemisphere is occluded by
all the other elements, using the following form factor for the influence of emitter
element E on receiver element R:

1− rcos(θE)max(1,4cos(θR))√
AE
π

+d2
. (2.13)

In this formula θE and θR are the angles between emitter surface and receiver
surface and transmittance direction, respectively, d is the distance between R and
E, and AE the emitter area. After the first pass, there is overshadowing because
occluder overlap was not taken into account yet. In the second pass, the same cal-
culations are repeated, but overlap is accounted for by multiplying the shadowing
term of an emitter with its own accessibility from the first pass, based on the as-
sumption that elements that are in shadow contribute less to the shadowing itself.
More passes will account for triple shadowed surfaces or more. To break down the
quadratic complexity in the number of vertices, Bunnell uses hierarchical level of
detail based on the distance to the receiver elements, which reduces the complex-
ity to O(n log(n)). It is straightforward to extend the algorithm to compute diffuse
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p

Figure 2.27: The SSAO method of Mittring et al. [Mit07] uses a spherical sam-
pling kernel and a depth test to determine if a sample is occluded. In this case,
4 out of 6 samples are occluded. Originally the samples are unweighted, in later
implementations they are correctly cosine weighted.

color bleeding. The author also suggests to estimate the bent normal by weighting
the normalized transmittance direction with the form factor and subtracting it from
the actual surface normal. Similar ideas have been later used by Dachsbacher et
al. [DSDD07] in their antiradiance algorithm, e.g., the convergence towards the
proper lighting solution. However, the algorithm of Dachsbacher et al. is based
on a rigorous mathematical concept that results in a novel reformulation of the
rendering equation, while the method of Bunnell is a more practical approach that
uses many ad hoc assumptions.

2.5.3.2 Image-space methods

Image-space ambient occlusion methods, often referred to as screen space ambient
occlusion (SSAO) [Mit07], interpret the frame buffer as a discrete scene approxi-
mation. Screen-space algorithms have the benefit of a constant overhead that does
not depend on the scene complexity. This output-sensitivity and its good perfor-
mance makes SSAO is a very useful technique, hence we worked on improving
SSAO ourselves, and discuss our work in Chapter 5. The beneficial properties of
SSAO come with the price that certain information about the scene is lost in the
process. Therefore SSAO methods have problems on the borders of the screen,
and with surfaces that are not represented in the depth buffer. The issues can only
be compensated with additional computational effort - the first problem by using
G-buffers that are larger than the actually displayed window, the second problem
by using depth peeling to capture additional surfaces, and by moving the camera
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αp

n

Figure 2.28: The methods of Fox and Compton [SA07] and Shanmugam et
al. [SA07] use a 2D sampling kernel (left) that is projected into world space
(right). The sample is weighted with the cosine of the angle α between surface
normal and vector to the sample, and the distance. Samples below the hemisphere
have no contribution.

backwards by a certain offset to capture surfaces that are behind the view point.

SSAO has a lot of practical relevance: The first SSAO implementation by
Mittring [Mit07] came to use in the game Crysis, and up to this date many high
profile games like Starcraft 2 use SSAO to increase realism. As can be seen in Fig-
ure 2.27, the method of Mittring uses a spherical sampling kernel that is centered
around the current pixel, and makes a depth comparison in order to estimate the
number of samples that are occluded. The original implementation did not yet take
the incident angle into account, hence samples that fell into the lower hemisphere
of the surface also counted. This problem can be compensated by assuming pix-
els to be unshadowed if less than half of the samples are occluded. The banding
artifacts that occur for a reasonable number of 8-32 samples are traded for less
distracting noise, by reflecting the sample positions around a per-pixel random
normal vector. The quality of the method can be improved by using importance
sampling to better distribute the samples (i.e., more samples are created close to
the current pixel). In order to increase the samples that have an actual contribution
because they are in the upper hemisphere of a surface point, the samples can be
transformed to be always above the tangent plane of the surface. A number of con-
ceptually related SSAO methods were proposed [SA07, FC08, BSD08, RGS09].

Shanmugam and Arikan [SA07] presented a two-stage image space method.
The high-frequency near-field ambient occlusion is computed with a 2D sampling
kernel that is projected into the world space. They treat each sample as spherical
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p

horizon

angle

Figure 2.29: Using ray marching, horizon based ambient occlusion [BSD08] com-
putes the horizon angle, which corresponds to the maximum angle of the hemi-
sphere that is occluded by the horizon.

occluder with a certain size, and weight the sample contribution with the angle in-
cident to the surface of the shaded pixel as well as the distance. Note that, unlike
the method of Mittring [Mit07], this algorithm does not require a depth com-
parison of each sample. The second stage computes the low frequency far field
ambient occlusion using splatting of spherical occluders, similar to the method of
Dachsbacher and Stamminger [DS06].

Fox and Compton [FC08] proposed an SSAO shading technique that is very
similar to the method of Shanmugam and Arikan [SA07], but lacks a physical
explanation, and the parameters are artist controlled. As shown in Figure 5.11,
the method is easy to adjust and gives very nice results by emphasizing creases,
while the method of Mittring [Mit07] is more physically based and closer to the
original ambient occlusion definition.

Horizon based ambient occlusion [BSD08] computes the percentage of the oc-
cluded hemisphere with an idea that is very similar to horizon mapping [Max88].
The method uses ray marching to find the maximum occluding angle between the
image plane and the vector to the sample, in a fixed number of directions and sam-
pling steps, as can be seen in Figure 2.29. The ambient occlusion is then computed
as

AO = sin(h)− sin(t), (2.14)

where h is the horizon angle between image plane and sample direction, and
t is the angle between image plane and the tangent plane induced by the normal
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Figure 2.30: (left) Ritschel et al. [RGS09] first determine the visibility of samples.
In this example only sample C is visible. (right) Each visible sample is seen as a
small oriented patch which emits the direct light stored in the color buffer towards
shaded point P. (Image courtesy of Ritschel et al. [RGS09]).

at the current pixel. Note that, while all aforementioned SSAO methods have in
common that they ignore all blockers between the sample and the shaded pixel for
the sake of performance, this method iterates towards the correct solution depend-
ing on the number of ray marching steps.

Ritschel et al. [RGS09] extended their SSAO generation method to include
directional information and first-bounce global illumination. The SSAO genera-
tion is almost identical to the original method of Mittring [Mit07], but also takes
cosine and distance into account to accurately weight the samples that passed the
depth test. When sampling the depth buffer to make the depth comparison, it is
straightforward to also sample the color buffer and get indirect illumination al-
most for free. As can be seen in Figure 2.30), the method assumes each visible
sample to be a small sender patch lit by direct illumination from the environment
map. The influence of a sender patch to the indirect lighting Lind in a pixel P is
related to form factors known from radiosity [GTGB84]:

Lind(P) =
n

∑
i=1

ρ

π
Lsi(1−V (ωi))

Ascos(θsi)cos(θri)
d2

i
, (2.15)

where Lpix is the illumination stored at sender si, V (ωi) the visibility of the
sender, As the area of the sender patch, θsi and θri are the angles between trans-
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Figure 2.31: Even for quickly moving objects, most pixel information from the
previous frame can be reused in the current frame (shown in green) and only
some parts have to be recomputed (shown in red) (Image courtesy of Nehab et
al. [NSL∗07]).

mittance direction and sender normal as well as receiver normal in P, respectively,
and di the distance between sender and receiver. This method also supports depth
peeling for reducing the error due to the screen-space approximation.

2.5.3.3 Animated characters

Ambient occlusion for character animation can be achieved by precomputing
ambient occlusion for a couple of key poses and then interpolating between
them [KA06, KA07], at considerable storage cost.

2.6 Reprojection techniques for temporal coherence

Temporal coherence is an important topic in this thesis – we use it to accelerate
online occlusion culling, and to improve the quality of screen-space ambient oc-
clusion in real time. Therefore we now shortly discuss the previous work on using
temporal coherence to improve the performance and rendering quality of real-time
rendering algorithms, and in particular on reprojection techniques. It is a very in-
tuitive idea to exploit temporal coherence to accelerate interactive walkthroughs.
Between two consecutive frames, the view point will changes only marginally dur-
ing the course of a walkthrough, and the images stay mostly coherent. A clever
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algorithm can use this coherence to recompute only the parts of the image that
changed since the previous frame. Changes are induced by disocclusions on the
silhouettes of objects or in creases, or by a change of the illumination. Figure 2.31
shows that even in the case of fast moving animated characters, it is save to assume
that a considerable amount of pixels shown in green can be reused.

For a long time algorithms that exploit temporal coherence were mostly used
in offline rendering and ray tracing. Bishop et al. [BFMZ94] proposed to use
frameless rendering instead of the traditional frame-by-frame approach for ray
tracing. They update the pixels in a randomized manner, hence avoiding the effect
of image tearing in single buffer displays and having to update only a fraction of
the samples. Dayal et al. [DWWL05] improved on this approach by adaptively
using more samples in regions with high temporal gradients, i.e., with a high
degree of change.

Havran et al. [HBS03] use temporal coherence to speed up ray tracing in in-
teractive walkthroughs by avoiding the overhead of traversal whenever possible.
They use reprojection of visible points from the previous frame in order to predict
the object intersected by a ray in the current frame. Tawara et al. [TMD∗04] re-
duce the cost of global illumination techniques like density estimation, by moving
the computation into the temporal domain and distributing it over several frames.

A rasterizer requires a high amount of coherence, and it is not feasible to
handle pixels individually like in frameless rendering. However, temporal coher-
ence can be efficiently used by reprojecting the last frame into the current frame
and associating those pixels from the previous frame with the image pixels from
the current frame that represent the same world space position. The GPU-based
technique was independently proposed by Scherzer et al. [SJW07] (referred to
as temporal reprojection) who specifically use it to improve the quality of hard
shadows, and Nehab et al. [NSL∗07] for their multi-purpose shading cache. The
technique lead to a couple of follow up papers [SALY∗08, PSALY∗08, YNS∗09].
Reprojection methods were shown to be useful for a variety of applications, like
shadow mapping, anti-aliasing, or even motion blur [Ros07]. Both Scherzer et
al. [SJW07] and Nehab et al. [NSL∗07] use exponential smoothing to blend the
last frame with the new frame in the form
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Figure 2.32: Reprojection in combination with subsampling improves the quality
and efficiency of super sampling. From left to right: No super sampling, repro-
jection without subsampling, conventional super sampling, the method of Yang et
al. [YNS∗09], and a reference image showing the ground truth (Image courtesy of
Yang et al. [YNS∗09]).

ft = τs+(1− τ) ft−1, (2.16)

where s is the value computed in the current frame, and τ the exponential
weighting factor between 0 and 1. Scherzer et al. [SJW07] additionally weight
a shadow lookup sample according to the distance to the real texel center, which
gives them an estimate of the confidence in the correctness of the lookup result.
To improve the image quality for static frames, Scherzer et al. evaluate different
jittering schemes, among which the rotational scheme has been reported to provide
the best results.

All methods based on reprojection need a mechanism that determines when
a sample point has become invalid and cannot be reused. In the simplest case, a
single depth comparison between the reprojected sample and its stored counterpart
from the previous frame can be used to detect disocclusions. In the terminology
of the shading cache [NSL∗07], we speak about cache hits and cache misses.

Sitthi-Amorn et al. [PSALY∗08] attempt to generalize the shading cache ap-
proach and automatize it for pixel shader optimization. They identified the same
parameters for all techniques that use reprojection for optimization: The cost of
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Figure 2.33: Reprojection used for fast multi-sample soft shadow rendering by
rendering a single shadow map per frame from a random area light source sam-
ple and accumulating the results [SSMW09]. (Image courtesy of Scherzer et
al. [SSMW09]).

a pixel shader can be reduced for a single frame by spreading the computation
over δn frames, denoted as the refresh period. As a tradeoff, using more frames
induces a larger approximation error that is mainly caused by GPU-based bilinear
resampling. In their cost-benefit model, they also consider the frequency and the
penalty due to cache misses versus cache hits.

Yang et al. [YNS∗09] use reprojection to improve supersampling both in terms
of speed and quality. They are the first to make a deeper analysis of the blur arti-
facts due to bilinear resampling. As a remedy, they fall back to use subsampling
to increase the effective resolution. They succeed in reaching significantly faster
frame rates than conventional super sampling with better quality, while avoiding
most of the blurring artifacts associated with previous reprojection methods, as
can bee seen in Figure 2.32. However, their analysis considers only a limited set
of motions. Also, they do not take the orientation of the surfaces into account,
which is an important factor judging from our experience, as steep surfaces can
suffer from significant projection error and are prone to heavy blur artifacts.

Scherzer et al. [SSMW09] recently proposed using reprojection to quickly
render multi-sample soft shadows. They evaluate a single new sample on the area
light source per frame using a shadow map, and accumulate the results. In order
to speed up convergence, they compute a first estimation of the real shadow using
percentage-closer soft shadows (PCSS) [Fer05]. They also use a filter for blurring
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insufficiently converged shadows in the spatial domain. As can be seen in Fig-
ure 2.33 they achieve high-quality shadows for static scenes with a low overhead
compared to hard shadow mapping. Unfortunately, their approach has problems
with dynamic objects and moving light sources, which cause global changes in
the illumination that reduce the potential of temporal coherence significantly.

In a GDC presentation, Smedberg et al. [SW09] proposed using reprojection to
enhance the quality of SSAO independent from us. However, some details about
the method are not publicly available, and they do not specifically address the
proper invalidation of incorrect cache values, which is a key part of our approach
in Chapter 5.

Imperfect shadow maps [RGK∗08] allow hundreds of visibility queries per
frame in interactive time. However, even such a large number of queries are in-
sufficient to avoid typical undersampling artifacts, resulting in flickering between
frames. Knecht [Kne09] combines the imperfect shadow mapping approach with
temporal reprojection, removing most of these artifacts. Due to the low frequency
nature of indirect illumination, the motion blur like artifacts caused by moving
light sources and animated objects are not very distracting in the general case.
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We think too small, like the frog at

the bottom of the well. He thinks

the sky is only as big as the top of

the well. If he surfaced, he would

have an entirely different view.

Mao Tse-Tung
3

Algorithms for Scene Preprocessing

In this chapter we discuss an important but often neglected problem - how to
prepare a scene optimally for visibility computations. Most previous work dealt
with the actual visibility computation algorithms. However, before this, the scene
must be processed in a certain way. This requires solving a completely different
set of problems, in particular the issue of creating a good set of view cells and
objects (usually by means of subdivision). In this case, the meaning of “good” is
an interesting question on its own. We show how to compute information about
the visibility in the scene using global sampling, which is a common step in our
algorithms. In the following sections, we propose two particular solutions to these
problems. First we present an algorithm for view cell creation where the objects
are assumed to be given. Then we tackle the much harder problem of optimizing a
combined view space and object space subdivision. We show the dual relationship
of view and object space, and that properties like memory cost and render cost
depend on the interaction of both spaces.

3.1 Introduction

Traditional visibility preprocessing algorithms assume that a view space is par-
titioned into a set of view cells and the object space is partitioned into a set of
objects. While there is a huge body of literature on how to calculate a PVS for a
given view cell, the problem of how to actually define the view cells and objects
has received only marginal attention so far.

77



Chapter 3. Algorithms for Scene Preprocessing

A common scenario is that the partition of objects is already given (e.g, in a
game studio where objects are specified manually in the modeling phase), and the
task is to construct meaningful view cells. Note that a careful design of the view
cells is crucial for several reasons: (1) view cells that take the visibility structure
of the scene into account allow achieving smaller PVSs, and therefore faster ren-
dering speed at runtime, (2) a bad view cell definition can severely impact the
time required for the preprocessing step, and (3) the amount of memory required
to store the PVS data depends strongly on the quality of the view cell distribution.

Consider, for example, a model of a city with buildings of different heights. A
naive subdivision method that concentrates on the 2D layout of the city might end
up with most view cells seeing the whole city, because the upper parts of all view
cells extend over the roof tops. Clearly we would like to separate these regions
from those which see only the nearby streets. This shows that even for relatively
simple types of scenes, important visibility changes can occur due to the height
structure of the model.

The only published methods dealing with this problem are either based on
very simple regular top-down subdivision schemes, or treat only special types of
scenes (for more details refer to Section 2.4.1.1). In many practical applications
(e.g., computer games), designers do not rely on automatic methods for view cell
construction but tweak them by hand to meet certain constraints concerning PVS
size or memory footprint. The finest possible subdivision is given by the aspect
graph, which partitions the view space into cells from which the qualitative aspect
of the scene does not change [PD90]. However, the full aspect graph requires as
much as O(n9) nodes for perspective views (n is number of polygonal edges) and
is therefore prohibitively expensive to compute and to store.

What is even more surprising is that the problem of finding a good set of
objects for preprocessed visibility has practically not been addressed. Previous
methods would either (a) use scene triangles, which is impractical with modern
GPUs and prohibitively expensive both in memory cost and visibility computation
time, (b) assume that the objects are given, which is not always the case, e.g. with
large unprocessed datasets originating from a laser scan, or (c) use traditional
object-space partitioning techniques like a bounding volume hierarchy with the
surface area heuristics.
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Figure 3.1: (left) Illustration of the determination of visibility segments. (right)
The object information carried by the segments is then associated with the view
cells they intersect (shown in green).

Using traditional object-space partitioning techniques is a viable option, but
does not take into account that view space and object space are visibility depen-
dent and also interdependent. The resulting set of objects directly influences the
quality of the preprocessed visibility information. If the partitioning is too fine,
the memory costs for storing preprocessed visibility will be very high. Addition-
ally the setup costs for rendering the corresponding fine-grained objects on the
GPU will become a burden. On the other hand if the partitioning is too coarse,
visibility information will be inaccurate, leading to more geometry being rendered
than necessary, and therefore slower frame rates.

In our algorithms, we sample actual visibility information about the scene to
drive our heuristics. This sampling process is one of the key steps of our methods,
and we discuss it in detail in the following section.

3.2 Global visibility sampling

The first step in our approaches is to sample the whole view space sufficiently to
obtain a coarse, but reliable estimate of the visibility in a scene. A view space
sample is a 5D entity corresponding to a ray in primal space. For simplicity, let’s
assume that the view space is defined by a 3D spatial box of possible ray origins
(view space box) and contains all possible ray directions. The view space is then
sampled using the following strategy:
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Figure 3.2: Example of empty view space detection. The origin of the ray lies
inside the wall of the building and so the ray first hits a back-facing polygon. We
shift the ray origin to the intersection point and re-cast it. The resulting visibility
segment is shown as a thick line.

1. Determine an origin point P and a direction d of a random sample.

2. Cast a ‘forward’ ray from p in direction d and a ‘backward’ ray from p in
the opposite direction −d.

3. Construct a line segment formed by the calculated termination points of the
forward and backward rays. If at least one of the two rays hits an object, we
call the resulting line segment a valid visibility segment and store it for later
use.

The determination of visibility segments is illustrated in Figure 3.1. Three
visibility samples are generated from points p1, p2 and p3, resulting in two valid
visibility segments. s1 carries information about the visibility of two objects, s2

about one object. s3 is not a valid visibility segment since it does not hit any
object. The PVS for a view cell is computed as a union of objects associated with
the visibility segments intersecting the view cell (Figure 3.1 right).

Each sample is a line segment which associates all points on the line segment
with the visibility of the object(s) on its endpoints. Samples are bound by the
intersection points determined by the ray casting algorithm on each side. If the
ray caster reports no intersection, we clip the ray to the view space bounding box.

There is an interesting subtlety involved in polygon orientations. For a gen-
eral scene, the above procedure will create visibility segments in the interiors of
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objects if those regions are not explicitly exempted from view space. If, however,
the input model is guaranteed to be watertight and the polygons have a consistent
orientation, the algorithm can detect empty view space at no additional cost: if a
ray hits the back side of a polygon, the ray starting point is simply shifted to the
intersection point and the ray is re-cast (see Figure 3.2). In this way, no visibil-
ity segments will be generated in empty space. We have found that empty view
space detection can improve the final solution, because visibility regions are more
clearly separated.

3.2.1 Sample distributions

For a reliable visibility estimate, the sampling should be roughly uniformly dis-
tributed in view space, in the sense that the density of samples is distributed more
or less equally in the scene. There are several possible strategies for generating
randomly distributed samples. The most intuitive strategy is the point-direction

distribution [BMW∗09], where we choose a random point and direction that de-
fine the sample.

Alternatively we can choose a start point on an object surface and cast the
ray towards the view cells which see the object. The ray origins are distributed
uniformly over the object surface, and the ray directions use a cosine weighted
distribution over the object surfaces.

Interestingly, the best sampling strategy in our experiments was the so called
two-point distribution [BMW∗09], where we randomly select two points in the
view space that can be used to determine the sampling origin and direction. It
seems that this strategy reflects the distribution of potential locations of visible
objects better than directionally uniform sampling. For example, if directionally
uniform sampling is used in city-like scenes, many samples either hit the ground
or the sky and thus provide no useful information about visible objects.

The samples are generated using a 5D Halton sequence in order to provide
samples with low discrepancy. For more information on different static sampling
strategies, please refer to the work of Bittner et al. [BMW∗09]. Note that due to
occlusion, none of these strategies generates fully uniform samples. To achieve
full uniformity we would have to use global lines [SPNP96], which are much
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more expensive to generate. Therefore we suggest to use a mixture of some of
these sampling strategies in order to avoid biasing. Next we propose two specific
algorithms that use the sampling information for intelligent scene preprocessing.

3.3 Problem definition

The input to our algorithms is a subset V S⊆R3 called view space, and a set OS⊆
N of object identifiers representing the geometric primitives in the scene. The
algorithm operates on partitions (or subdivisions) of V S and OS, called V and O
respectively. Initially, V = {V S}. O is assumed to be given for the first algorithm,
while we start with O = {OS} for the second algorithm. Each step in the first
algorithm splits one node in V , while each step in the second algorithm splits
exactly one node in either V or O. An object space split of node O = O1 +O2, for
example, transforms the partition O into O′ = (O\{O})∪{O1,O2}. The goal of
both algorithms is to globally reduce a cost function corresponding to the expected
rendering time to a minimum as induced by V and O (i.e., for visibility solutions
based on the calculated subdivisions), while respecting certain constraints like the
maximum memory footprint.

3.3.1 Render cost model

The render cost cr of a given view space and object space partition V and O is
given by the expected value of the rendering time over all view cells:

cr(V,O) = ∑
V∈V

p(V )r(PV SV ), PV SV ⊆O (3.1)

where PV SV is an approximate PVS of view cell V consisting of objects from
O, r(PV SV ) is a rendering time estimator [WW03] for this PVS, and p(V ) is
the probability of the viewpoint being located in view cell V . Assuming that
viewpoints will be distributed uniformly in the whole view space, p(V ) can be
chosen as the ratio of the volume VolV of the given view cell and the total volume
Voltot of the view space:
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p(V ) =
VolV
Voltot

.

Alternatively, the user can specify any probability density d for viewpoint lo-
cations, so that areas where the user is more likely to move receive more attention
in the view cell construction. p(V ) is then given by:

p(V ) =
R

V d(V )R
V S d(V )

.

The rendering time for a view cell is estimated from the rendering times for
the objects in the PVS as seen from view cell V :

r(PV SV ) = ∑
O∈PV SV

r(O,V ).

The rendering time estimation function r(O,V ) is difficult to establish exactly,
since it depends not only on the particular set of objects, their attributes and dis-
tance to the view cell V , but also on the actual implementation and hardware. On
the other hand, the view cell subdivision should not be tied too much to a spe-
cific hardware, neither do we have an accurate PVS (it is only estimated from a
coarse visibility sampling) to determine the absolute value of the rendering time.
Therefore we propose to loosely calibrate an analytic rendering time estimation
function [WW03] to a small number of target machines. Since current graphics
hardware is CPU limited for small batches, the following function provides good
results:

r(O,V ) = max(a,btO,cpO),

where a, b and c are positive constants, and tO and pO are the number of
triangles and the number of projected pixels of object o (estimated from some
points in the cell) respectively.
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Figure 3.3: Right: A 2D cut through a set of view cells constructed with our
method for the Soda Hall building (through the floor shown on the left). Note
how the shape of view cells adapts to loci of visibility events.

3.4 Adaptive visibility-driven view cell construction

Our first algorithm assumes that scene objects are already given and allows for an
automatic partitioning of view space into a multi-level view cell hierarchy. Our
subdivision process has a sufficient degree of freedom to align the split planes
with the scene geometry, but unlike some previous methods the partition is not
restricted to planes given by the scene geometry. We show that the resulting view
cell hierarchy works for different types of scenes and gives lower average render-
ing time than previously used methods.

3.4.1 What is a good view cell partition?

First we have to establish what criteria determine a “good” view cell partition,
and explain why we chose to use this particular render cost model described in
Section 3.3.1 for our subdivision process. Since the ultimate goal of visibility
preprocessing is to accelerate rendering, the runtime render costs will play an im-
portant role. The intuitive answer is that the partition should minimize the render
costs at runtime for each possible viewpoint. A view cell subdivision correspond-
ing to this criterion actually exists and is given by the aspect graph. This structure
is fully determined by the visibility structure of the scene, namely by the so-called
visual events (boundaries at which changes in visibility occur). However, this
subdivision would be prohibitively expensive to compute and to store.
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This leads to PVS storage space and precomputation time as further important
criteria. Both of these are determined by the total number of view cells in the sub-
division, the actual visibility, the visibility algorithm, and the PVS storage method
used: output-sensitive visibility algorithms can make computation time sublinear
in the number of view cells, and PVS compression schemes can significantly re-
duce the required storage space.

An alternative to minimizing runtime render costs is to specify a rendering
budget, i.e., a maximum render cost for a view cell. However, a model can contain
an arbitrary number of viewpoints for which this rendering budget cannot be met.
This can easily lead to excessive subdivision in areas with unrestricted visibility,
and therefore again to high storage costs and precomputation time. Furthermore,
such a view cell partition will be strongly tied to a particular runtime system,
which is undesirable for a preprocessing algorithm.

We therefore propose the average (= expected) render cost of the whole view
space as the criterion to drive the view cell construction (as defined in Equa-
tion 3.1), because it can be well combined with a constraint on the number of
view cells in order to limit PVS storage costs and precomputation time.

We have to choose the shape of the candidate view cells that will be subjected
to the above criteria. One option is a regular subdivision (e.g., a kD-tree of the
scene). However, the boundaries of such view cells will not coincide with actual
changes in visibility, i.e., visual events. On the other hand, finding these visual
events (e.g., using the aspect graph) is expensive. We therefore propose a two-tier
approach: an initial subdivision will follow (but not be restricted by) the geometry
in the scene. Cells of this initial subdivision will subsequently be merged accord-
ing to the visibility information in the scene. This causes the final view cells to
approximate the important visual events in the scene.

Our adaptive view cell construction technique takes the actual visibility struc-
ture of the scene into account, and relies on four novel contributions: (1) the visi-
bility of the scene is approximated by an inexpensive stochastic sampling step, (2)
the view cell construction is driven by the average rendering time of the resulting
partition, which is ultimately the most important factor in visibility processing,
(3) an optimized set of view cells is found by combining top-down subdivision
and bottom-up merging steps, and (4) our method allows easy control over the
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Figure 3.4: (left) Visibility segments determined by the visibility sampling step;
5000 of 1M line segments are depicted for sake of clarity. (center) Initial view
space subdivision consisting of 5000 view cells. (right) 200 view cells retrieved
from the merge history tree.

subdivision by using intuitive global termination criteria such as a threshold on
rendering time reduction or a maximum memory budget. Another novelty is that
we do not construct a fixed set of view cells, but provide a hierarchy of view cells,
which makes it easy to extract an optimized set of view cells for a given set of
constraints. As a result, our view cell subdivision provides fast rendering times
with a minimal set of view cells, thus saving both preprocessing time and PVS
storage space. See Figure 3.3 for an example of a view cell partition created with
our technique.

3.4.2 Overview

3.4.2.1 Algorithm outline

Our view cell construction method consists of three main steps:

1. Visibility sampling

2. View space subdivision

3. View space merging

The first step estimates visibility in the scene, which allows basing the view
cell construction on scene visibility without incurring the overhead of having to
calculate an accurate visibility solution. The resulting maximal free line segments
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(i.e., the visibility segments introduced in Section 3.2)) provide information about
scene visibility for the subsequent steps of the view cells construction.

The second step performs an adaptive hierarchical subdivision of view space.
The subdivision is driven by heuristics which aim to minimize the estimated ren-
der cost of the resulting subdivision. The result is a set of elementary view cells
which satisfy certain global termination criteria (maximum memory budget or
minimal render cost reduction).

The third step merges the elementary view cells to larger ones while minimiz-
ing the increase of the estimated render cost for each merging step. The merging
progress is recorded in a merge history tree. The initial subdivision and the merge
history define a view cell hierarchy, which allows retrieving an optimal set of view
cells for a specified granularity of the view space subdivision. Additionally, this
hierarchy can be used to compress the PVSs in a simple and efficient way. The
merging step will implicitly approximate important visibility events in the scene.
The three steps of our algorithm are illustrated in Figure 3.4.

3.4.2.2 Representation of view cells

We maintain the view space partition as a binary space partition tree which is
constructed top-down. The leaves of this tree are convex polyhedra which form a
set of elementary view cells. The final view cell partition is constructed from these
elementary view cells using a bottom-up merging procedure which is recorded in
a merge history tree. Note that merging is not tied to the original subdivision and
therefore usually results in a different, more optimal tree. Both steps of the view
cell hierarchy construction will be detailed in the next section. The representation
of view cells using the two hierarchies is shown in Figure 3.5.

Note that we partition the view space only in the spatial domain, since the ob-
server can quickly move through the whole directional space within a few frames
by changing the viewing direction. Fortunately, culling in directional space is
efficiently handled by view-frustum culling.
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BSP tree

Elementary view cells

Merge history tree

S

S 1

2
view cell sets
‘optimal’

Figure 3.5: The view cell hierarchy is represented using a BSP tree and the merge
history tree. The BSP tree provides a geometrical description for elementary view
cells. The merge history tree provides a logical grouping of the view cells, which
allows extracting a set of view cells with a specified granularity of the subdivision.
The example shows two sets S1 and S2, where the desired number of view cells
for S2 is larger than for S1.

3.4.3 Adaptive view cell construction

In this section we describe the view space construction using the sampled visibility
information. First we describe the subdivision process of the view space, then the
further optimization of the view cells in a subsequent merging process.

3.4.3.1 View space subdivision

The view space subdivision uses a top-down approach to create a set of elementary
view cells. In particular we use binary space partitioning (BSP) maintained by a
BSP tree. Starting with a single view cell corresponding to the whole view space,
we recursively subdivide the current view cell using either axis-aligned planes or
planes aligned with scene geometry. Each cell of the subdivision also references
all visibility segments that intersect it.

The BSP construction uses greedy optimization for the next-best split. Note
that in contrast to most previous work on BSP or kD-tree construction, we employ
a priority queue for selecting the splitting plane candidates. An entry in the prior-
ity queue consists of a reference to a leaf node, the best splitting plane candidate
inside this leaf, and a cost reduction which would be achieved when splitting the
leaf by the plane. For each step of the subdivision, we select the node for which

88



3.4. Adaptive visibility-driven view cell construction

its best splitting plane provides the highest render cost reduction. The subdivision
is thus refined progressively and regions with the highest potential render cost
decrease are subdivided first.

The best splitting plane for a node is established as follows: we generate axis-
aligned splitting plane candidates positioned at the endpoints of rays intersecting
the node. Additionally, we generate planes aligned with the geometry contained
in that node (if any). For each candidate, we calculate the reduction of the ex-
pected rendering cost cr(S) that would result from subdividing the node by that
plane. This is done by partitioning the current set of visibility segments accord-
ing to the plane (note that a segment can be assigned to both sets), computing the
PVSs (i.e., the union of the objects hit by the visibility segments) for the front and
back segment sets, and using those to evaluate the reduction of the cost. Finally,
we choose the candidate plane that provides the most reduction in expected ren-
der cost and put a corresponding entry in the priority queue. The subdivision is
terminated when one of the following termination criteria is met:

• A specified maximum number of elementary view cells have been gen-
erated. This ensures that the algorithm stays within reasonable memory
bounds.

• The cost reduction for the best splitting plane is below a specified threshold.
As the cost reduction can temporarily stagnate, we only terminate when the
reduction was below the threshold in several successive subdivision steps.

Due to the priority-driven subdivision, the view space will be evenly subdi-
vided regardless of the termination point. This is not the case for depth-first ap-
proaches, where for example a termination on low memory would leave whole
view space regions unsubdivided. Additionally, the local termination criteria used
in the depth-first approach are hard to tune.

We experienced that in some rare cases the described greedy optimization can
lead into a local minimum. Consider the situation that the render cost of a node
cannot be reduced by the current split, but only by subsequent splits of the child
nodes. However, the node is never chosen for subdivision because it provides no
render cost decrease. We have addressed this problem by computing a weighted
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sum of the render cost reduction and the absolute render cost of the node in the
evaluation of its priority. A very small weight of the absolute render cost (1%) has
been sufficient to ensure that the split is taken at some point during subdivision.

Note that the time required for the subdivision is dominated by the cost evalu-
ation for the candidate planes. To accelerate this process, we limit the number of
axis-aligned as well as geometry-aligned candidates. If the number of visibility
segments or geometry planes is above these limits, we select their random subsets.
This speeds up the selection especially for nodes near the root of the subdivision
tree.

3.4.3.2 View space merging

View space merging is a bottom-up process which aims to reduce the number
of view cells while minimizing the cost of the merged view cell set. We use a
greedy algorithm that always merges the pair of view cells resulting in the minimal
cost increase. This is done by maintaining a priority queue of view cell merge
candidates. Each pair of neighboring view cells forms a merge candidate. The
cost increase due to the merge candidate consisting of view cells x and y is given
as:

∆cr(x,y) = cr({x⊕ y})− cr({x,y}), (3.2)

where x⊕y is the view cell resulting from merging the set of view cells {x,y}.
The priority of the merge candidate is then given by −∆cr(x,y).

In the beginning, the queue is initialized with all pairs of neighboring view
cells. At every step, we select the merge candidate with the highest priority (small-
est relative cost increase) and merge the associated view cells. The PVS and the
estimated render cost of the new view cell is calculated. After the merge, the pri-
ority queue is updated by removing entries corresponding to the merged view cells
and inserting new entries corresponding to the created view cell and its neighbors.
Note that the set of neighbors for a view cell is determined using the BSP tree.

The merging process provides a sequence of view cell sets: at every merge
step we obtain a new set of view cells with exactly one view cell less than in
the previous set. We record the whole merging process in a merge history tree.
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The leaves of this tree correspond to elementary view cells. Every internal node
corresponds to a merged view cell. With each internal node we associate the
current cost of the subdivision resulting from the corresponding merge.

Once the merge history tree is built, there are several ways how to create a
view cell partition from the tree. The easiest way is to specify a target number n

of view cells and extract these from the tree (for more detail see Section 3.4.4).
These view cells can then be used as input for a visibility preprocessing algorithm.

3.4.4 Using the view cell hierarchy

This section discusses different possibilities for using the constructed view cell
hierarchy.

3.4.4.1 Extracting view cells

The view cell hierarchy allows extracting the set of view cells most suitable for
the target application. Below we discuss three possibilities of view cell extraction.

Getting a specified number of view cells. Often, it is most convenient to specify
a desired number of view cells to use for visibility calculation. This limits both
the preprocessing time and the storage required for PVS data, as well as restricting
the frequency with which new PVS data has to be fetched due to crossing into a
new view cell at runtime. To obtain a given number of view cells, we perform a
priority traversal of the merge history tree. The priority of a node is given by the
cost associated with the node. When reaching a leaf node, we add it to the list
of resulting view cells. When the sum of traversed leaves and the nodes in the
priority queue becomes equal to the desired number of view cells, we terminate
the traversal and add the contents of the priority queue to the resulting view cells.
The collected view cells form a cut of the merge history tree at optimal depths
with respect to the specified granularity.

Fulfilling a given memory budget. The procedure described above can be ex-
tended to allow specifying an approximate memory budget for the complete PVS
representation (it is only approximate because it relies on the approximate PVS
from the sampling step). At every step of the tree traversal, we can easily calculate
the memory requirements for the current set of view cells and their approximate
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PVSs. We can terminate the traversal when the budget is reached and collect the
resulting view cells as described above. Note that this step can also be applied
after computing the final visibility classification. In this case the memory budget
would be the real budget for storing the PVS representation.

Extracting important view cells. An alternative to the methods described
above is view cell extraction based on their estimated render cost. In particular we
can use the maximal tolerance of the increase of the estimated render cost over the
minimal cost, i.e., the cost provided by the densest view space partition (elemen-
tary view cells). The view cells are extracted again by a priority traversal of the
merge history tree. At each step we evaluate the ratio of the current cost (stored
with the processed node) and the minimal cost. If the ratio falls below a threshold,
we terminate the traversal and collect the resulting view cells as described above.

Interactive specification. In practice, the user can combine these methods in
an interactive setup. The selection process can easily be accomplished with a
real-time visualization of the view cells and a depiction of the associated cost and
memory budgets, as well as the just described cost ratio. Typically, the user would
start by setting an initial cost ratio and refining the result interactively. This allows
the user interactive control over the process, which is a feature often desired by
practitioners.

3.4.4.2 PVS compression

Due to spatial coherence, the siblings in the hierarchy will have mostly coherent
PVSs. In order to further reduce the memory footprint of the view cells, we can
propagate the PVS information as high in the hierarchy as possible [GSF99] once
we have calculated the actual PVSs using a visibility preprocessing algorithm.
The intersection of the PVSs of the children is propagated to the parent and deleted
from the children, which reduces the number of references stored at the leaves.

3.4.5 Results

We have evaluated our method on three test scenes. The first scene (Soda) repre-
sents the Soda Hall building, the second scene (Atlanta) represents 30km2 of At-
lanta, and the third scene (Vienna) represents the city of Vienna (see Figure 3.6).
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Figure 3.6: We tested our view cell construction algorithm in typical city scenes
(left, Vienna) and building interiors. The right image shows a snap shot of an
interactive render cost visualization from a view point outside of the Soda Hall
building, on a scale from green (view cells with low render cost) to red (high
render cost). The geometry is shown as a wireframe.

The Soda scene consists of 9129 objects formed directly by the scene polygons,
the Atlanta scene of 3495 objects (100k polygons), and the used version of the
Vienna scene of 12668 objects (1M polygons).

3.4.5.1 Evaluation Framework

In our experiments we have observed that evaluating the view space partition by
visual inspection is difficult. Often such an inspection can even be misleading:
nicely looking view cells like those corresponding to corridors in a building, are
bad in terms of the render cost. As a basic tool for evaluating the quality of the
partition we use the dependence of the expected render cost on the number of view
cells. For selected tests, we also use histograms which show the distribution of
render cost among view cells for a specified granularity.

In order to compare different view cell construction strategies, we cast addi-
tional evaluation samples (rays) after the view cells have been constructed. The
only purpose of the evaluation samples is to obtain comparable render cost estima-
tions. These samples determine PVSs for all view cells of the view cell hierarchy,
which are then used for evaluating Equation 3.1. Note that although the number of
evaluation samples we used is larger than the number of initial samples, the com-
puted PVSs are still only approximations to the exact ones. For methods which
don’t use view space merging, the view cell hierarchy is just defined by the initial
subdivision step.
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Figure 3.7: Evaluation of visibility sampling. The left columns of plots shows
the actual render cost estimates for the Soda, Atlanta and Vienna scenes for sub-
divisions created from 50k, 200k, and 1M visibility samples. The right columns
shows a verification of the resulting subdivisions by using 8M evaluation samples.
From top to bottom: Soda, Atlanta, and Vienna scene.
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3.4.5.2 Visibility sampling

The first test aims to verify our assumption that a relatively coarse visibility sam-
pling is sufficient to establish a stable render cost estimate for driving the view
space partition. In order to evaluate this, we have constructed view space subdi-
visions using different numbers of visibility samples (50k, 200k, 1M). The results
are summarized in Figure 3.7. As expected, lower numbers of visibility samples
generate lower render cost estimates due to visibility undersampling. However, by
casting the same number of evaluation samples, we can observe that the resulting
subdivisions provide comparable render costs. For example there is only a minor
improvement by moving from 200k to 1M samples.

3.4.5.3 Comparison with other methods

In Figure 3.8, we show a comparison with other proposed view cell construction
methods. We compared 7 different view cell construction methods: our method
with view space merging (AV-M), our method without view space merging (AV-
S), breadth-first kD-tree subdivision using spatial median split and along a cycling
axis (KD-CASM), breadth-first kD-tree subdivision using spatial median split
and along the longest axis (KD-LASM), depth-first kD-tree subdivision along the
longest axis with additional visibility-based termination (i.e., the number of PVS
entries is smaller than a user-defined threshold) (KD-VT) and BSP subdivision
aligned with the scene geometry (BSP). For our method we cast 1.5M rays to
generate visibility samples. Note that BSP corresponds to the method for cell and
portal construction described by Teller [Tel92b], where a node is split by aligning
the split plane with the largest polygon intersecting the node (and terminating the
subdivision if there is no such polygon left), also known as auto-partition BSP
algorithm. KD-VT corresponds to subdivisions performed by Saona-Vázquez et
al. [SVNB99] and Nirenstein et al. [NB04a] for visibility preprocessing in general
scenes. We describe these algorithms in more detail in Section 2.4.1.

The results for three different test scenes are summarized in Figure 3.8. A
number of observations can be made from the measured results:

• Our method performs better than the comparison methods in all tests. The

95



Chapter 3. Algorithms for Scene Preprocessing

Average render cost (Soda)

 25K 20K 15K 10K 5K
 10

 100

 1K

 10K
KD−VT

KD−LASM
KD−CASM

AV−M
AV−S

BSP

View cells

 0

View cells

KD−VT

BSP
KD−LASM
KD−CASM

AV−M
AV−S

 0
 1

 1.5

 5K  10K  15K  20K  25K

 3

 2.5

 2

 3.5

 4

 4.5

 5
Render cost ratio (Soda)

 50K 0  10K  20K
View cells

AV−S

 1K

 100

 10K

Average render cost (Atlanta)

 30K  40K

KD−VT
BSP

KD−LASM
KD−CASM

 0  10K  20K  30K
View cells

 50K 40K

KD−LASM

KD−CASM
 4

AV−S

 1

 5
Render cost ratio (Atlanta)

 1.5

 4.5

 2

 2.5

 3

KD−VT
BSP

 3.5

 0

KD−VT
BSP

KD−LASM
KD−CASM

AV−S

 10K  20K  30K  40K  50K
 100

View cells

 100K

 10K

 1K

Average render cost (Vienna)

 40K 0

 5
Render cost ratio (Vienna)

 4.5

 4

 3.5

 3

 2.5

 2

 1.5

 1
 50K

View cells

BSP
KD−LASM
KD−CASM

AV−S

KD−VT

 10K  20K  30K

Figure 3.8: Comparison of the different view cell construction methods for three
different scenes (from top to bottom: Soda, Atlanta, Vienna). The left column
shows the expected render cost depending on the number of view cells. The right
column shows the render cost ratio with respect to our AV-M method.
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Figure 3.9: (left) BSP based view cells have the problem that large regions with
high PVS (shown in dark/magenta) are not subdivided any further, while (right)
our method nicely subdivides these regions.

gain over the best reference method (KD-CASM) in terms of the render cost
is about 20-30%.

• The gain of view space merging (AV-M) applied on our subdivision (AV-
S) is very limited. The only benefit appears in the Soda scene for a lower
number of view cells. Therefore we show the AV-M curve only for this
scene.

• KD-CASM performs significantly better than KD-LASM in outdoor city
scenes. In these scenes, horizontal subdivision of view cells is very im-
portant, as it separates regions with complex visibility which see above the
roofs of the buildings from those which see only the nearby streets. When
using KD-LASM, the horizontal splits occur only for a very high density of
the subdivision.

• The plots show that BSP performs worst of the tested methods, as it can-
not provide a sufficient reduction of the render cost. This follows from
the inability of auto-partition BSP to subdivide regions with high render
cost, which however contain no geometry that can be used to align the split
plane. This observation is not surprising for the Atlanta scene and the Vi-
enna scene, as the method is not designed for outdoor scenes. However,
even in inside the Soda building the BSP method leaves large view cells cor-
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responding to the corridors with complex visibility, which intuitively look
like good view cells but have very high render cost. On the other hand as
shown in Figure 3.9, our method successfully subdivides these high PVS
regions. We subdivided down to 2734 leaves for both methods.

• The depth-first subdivision (KD-VT) arrives at a termination point with a
cost of 50-80% higher than that of our method for the same number of
view cells. However, as seen from the plot, it does not provide a scalable
solution with respect to the number of view cells. This problem can be
addressed by a breadth-first modification of the method. Similarly to KD-
LASM, KD-VT also splits at the spatial median of the longest axis. With
breadth-first subdivision, the resulting render cost curves for both methods
are practically the same. Note that we used a relatively low PVS termination
criterion, otherwise the subdivision is often terminated much too early, with
many objects missed by the coarse sampling, resulting in view cells with
high render cost in the fully computed visibility solution.

• Another criterion for evaluating the methods is the number of view cells
needed to achieve the same render cost. We can see that the reference meth-
ods need significantly larger numbers of view cells in order to reach the
same render cost as the AV-S or AV-M methods. Also note that for some
methods, a particular render cost cannot be reached within a given view cell
budget. For example, in the upper right plot of Figure 3.8 a render cost of
100 (indicated by the brown line) is reached by our methods after less than
8000 view cells, while about 25000 view cells are required for the next best
methods, and the other methods never seem to reach this point.

We have also compared the breadth-first version of the KD-VT and AV-M
methods, using a histogram showing the distribution of render cost over the view
space volume (see Figure 3.10). For the AV-M method, most of the volume is cov-
ered by lower render cost. In contrast, the KD-VT method still contains numerous
regions with high render cost: there are regions with up to 3 times higher render
cost compared to the maximum render cost for the AV-M method. This observa-
tion indicates that even if AV-M does not provide an impressive reduction of the
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Figure 3.10: Render cost / volume histogram for the AV-M and KD-VT (breadth-
first) methods computed for the Vienna scene with 15000 view cells.

average render cost, it results in a significantly better render cost distribution over
the view space volume.

3.4.5.4 Using view space merging on existing solutions

View space merging can be applied as a standalone technique for obtaining a scal-
able view cell representation from an existing set of view cells. An example of this
process is shown in Figure 3.11 (left). We can see how the initial depth-first subdi-
vision has been smoothed by the application of view space merging. Additionally
the render cost curve resulting from the merging process gives us information
about the required granularity of the subdivision. If many initial merging steps
result only in a minor increase of the render cost, then we can safely reduce the
number of view cells for the final visibility representation.

3.4.5.5 Influence of geometry-aligned splits

We have evaluated the influence of geometry-aligned splits on the expected render
cost in non-axis aligned environments. In particular, we measured the render cost
curves for our method when using only axis-aligned splitting planes and when
using also geometry-aligned planes. We limited the number of tested geometry-
aligned split planes to 150. The result is summarized in Figure 3.11 (right). We
can see that for this test the geometry-aligned planes give a benefit from 4 to 15%.
This suggests that, when also taking into account the increased computational
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Figure 3.11: (left) View space merging applied on the subdivision using the KD-
VT method. (right) Influence of geometry-aligned splits in a soda building rotated
by 30 degrees. The plots shows the render cost ratio of using only axis-aligned
splits with respect to a method using also geometry-aligned splits (render cost
ratio=1).

complexity connected with geometry-aligned splits, the benefit they provide is
only marginal.

3.4.5.6 Timings

We have measured the running times of our view cell construction for several
scenarios. The timings measured on a 3.4 GHz Intel Pentium 4 with 2GB of
RAM are summarized in Table 3.1. We see that for more complex scenes, the
time overhead due to geometry-aligned candidates as well as the time required for
the merging increases. Since the benefit of these two techniques is relatively small
in practice it should be sufficient to use our priority-driven subdivision using the
cost heuristics and axis-aligned splits.

3.4.6 Discussion

3.4.6.1 Visibility sampling

The idea which drives our view cell construction algorithm and which allows an-
alyzing the quality of different view space subdivisions is visibility sampling and
the usage of the visibility segments. As we have shown in the results, it is not nec-
essary to calculate an accurate visibility solution for each step of the subdivision
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Subdivision Subdivision Merge
Scene AA + GA AA

[s] [s] [s]
Soda 430.8 287 103.3

Atlanta 1488 338.1 1912
Vienna 1565 354.1 1569

Table 3.1: Timings for generating 50000 view cells using our view cell con-
struction method. For all tests we cast 1.5M rays to generate visibility samples.
The table contains timings for the subdivision when using axis-aligned as well as
geometry-aligned planes (AA + GA) and when using only the axis-aligned planes
(AA). We limited the number of geometry-aligned candidate split planes to 150.
The last column shows timings for the view space merging step.

process in order to determine the following steps. Instead, even a relatively coarse
sampling of visibility already gives stable estimates of the render cost. Our algo-
rithm is therefore not limited by a slow visibility solver. It can quickly perform a
deep top-down subdivision, which would not be possible if each subdivision step
were to depend on the outcome of a complete visibility processing step.

3.4.6.2 Handling empty space

One of the important differences of our method compared to techniques designed
for cell and portal graph construction is the handling of “empty space”, i.e., re-
gions which contain no geometry. The results show that even in indoor environ-
ments it is very important to further refine the subdivision in order to adapt to
visibility (rendering) complexity. A purely geometry-based subdivision might re-
sult in big view cells which look “natural”, but their PVS is way too large, even
though a significant reduction is possible (as shown in Figure 3.9).

3.4.6.3 Handling difficult regions

The existing visibility preprocessing methods which perform adaptive view space
partitioning [SVNB99, NB04a] handle difficult regions (i.e., regions with large
irreducible PVS) by terminating subdivision at a specified maximal depth. This
can be costly for preprocessing as well as storage. In our method this problem
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is addressed already at the subdivision stage and gets further refined in the merg-
ing step. The subdivision uses the cost-based global termination criterion which
prevents further subdivision when all regions already have irreducible render cost.
However there might be regions where the local benefit of the subdivision is just
above the specified threshold. These regions will be merged soon in the merging
stage, and thus the corresponding fragmented view cells will reside at the bottom
of a merge history tree.

3.5 Optimized subdivisions for preprocessed visibil-
ity

In the previous section we proposed a tool for optimized view space partitioning.
In this section, we extend this method to handle both view space and object space
partitioning together in order to control the render cost and memory cost of the
visibility description generated by a visibility solver. The presented method pro-
gressively refines view space and object space subdivisions while minimizing the
associated render and memory costs. While we used actual visibility information
to drive the view space subdivision in the previous section, this time both sub-
divisions are driven by actual visibility information. We show that treating view
space and object space together provides a powerful method for controlling the
efficiency of the resulting visibility data structures.

This section provides two main contributions: 1) This is the first algorithm
to consider object space subdivision as a visibility problem and which provides
a solution for visibility driven object splits. 2) We present the first integrated

visibility-based solution for view space subdivision and object space subdivision.

As a result, the expected render cost in the scene can be reduced significantly
compared to a naive view space and object space subdivision. We will show that
our algorithm consistently improves the render cost at a given memory cost, while
naive methods are very fragile with respect to the relative depths of object and
view space subdivisions. Figure 3.12 shows a simple illustrative example: using
a non visibility-aware object subdivision method, the spherical object in the room
would inevitably have been needlessly subdivided uniformly, whereas our method
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Figure 3.12: Example of combined view space and object space subdivisions. The
scene consists of a sphere inside the room which can be seen only through a small
hole. We show a cut through the 3D view space subdivision. It concentrates in the
regions which see the sphere through the hole and thus have higher render cost
(low cost=blue, high cost=magenta). The partitioning of the geometry focuses on
the front of the sphere which is visible from more view points.

concentrates the subdivision to the front, where actual visibility events take place.

To our knowledge this method is the first which constructs an object space
subdivision that is optimized for storing preprocessed visibility. The known visi-
bility preprocessing methods assume that the objects are either (1) identical to the
triangles, (2) defined in the modeling phase, or (3) result from a subdivision with
some local termination criteria. In the first case the memory consumption of the
resulting PVSs for scenes with many triangles and view cells are prohibitive. The
second case requires manual modeling; additionally it is not obvious how well
the results of modeling will fit the visibility data. In the third case the success of
the preprocessing strongly depends on setting the termination criteria of the sub-
division: if the partitioning is too fine, the memory costs for storing preprocessed
visibility will be very high. If the partitioning is too coarse, there might be signif-
icant reserves in the render cost reduction and the desired frame rate will not be
reached.
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3.5.1 Outline

The basic idea of the proposed algorithm is the same as for the view cell construc-
tion algorithm from Section 3.4 – we acquire coarse visibility information about
the scene in a global sampling step. Then we use this visibility information to
partition view space and object space simultaneously.

The main criterion to drive the subdivision are the expected render and mem-
ory costs which are estimated from the coarse visibility information. Basically,
each split attempts to reduce the render cost while keeping the associated memory
cost increase as small as possible. As a result we end up with view space and
object space subdivisions which can then be fed into any from-region visibility
preprocessing algorithm. The proposed method thus consists of two main parts:
visibility sampling and interleaved subdivision. Visibility sampling acquires vis-
ibility information which is represented as a set of maximal free line segments,
which we call visibility segments (refer to Section 3.2). These segments are then
used to quickly determine the visibility between the cells of the constructed view
space and object space partitions.

The subdivision starts with a single view cell representing the whole view
space and a single object representing the whole scene geometry. Both the view
space and geometry partitions are progressively refined by splitting either a view
cell or an object into two parts. The main criterion driving the splits are the ex-
pected render and memory costs which are estimated using visibility samples.
Each split attempts to reduce the render cost while keeping the associated mem-
ory cost increase as small as possible.

Candidates for splitting are chosen from all current view cells and geometry
nodes. The candidates are stored in a priority queue, and at each step we pick
the candidate which provides the best ratio of render cost reduction over memory
increase. This candidate is then used to subdivide the associated view space or
object space cell. The subdivision proceeds until the given termination criteria are
reached. In particular the algorithm terminates if the local render cost reduction
falls below a specified threshold, or a maximal memory budget for the whole
visibility data is reached. As a result the algorithm delivers optimized view space
and object space partitions which can then be fed into any from-region visibility
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preprocessing algorithm.

3.5.2 Framework for interleaved subdivisions

The interleaved view space and object space partitioning, which is the core of the
proposed method, is driven by a cost model based on the estimate of the average
rendering time and the memory costs needed for storing the visibility informa-
tion. This section describes a theoretical framework for the rest of the chapter. In
particular it addresses the representation of the subdivisions, and evaluation of the
render cost and the memory cost.

3.5.2.1 Representing the subdivisions

In our implementation, we use an axis-aligned kD-tree to represent the view space
subdivision, with the leaf nodes corresponding to the view cells. As shown in
Section 3.4, a kD-tree is efficient and provides good render cost reduction. To
represent the object space subdivision, we use a bounding volume hierarchy. The
hierarchy is a binary tree where each node recursively subdivides the associated
triangles into two disjoint subsets represented by its two children. The leaves of
the hierarchy correspond to the constructed scene objects. Each leaf (object) con-
tains references to scene triangles. For each node we also keep an axis-aligned
bounding box. Note that the bounding boxes of the leaves can be disjoint or over-
lap, but the structure has the advantage that each triangle is referred to only once
and thus the memory consumption of the data structure is O(n), as the internal
nodes of the hierarchy only add a constant factor.

3.5.2.2 Render cost

The main factor in determining whether a split is beneficial or not is the effect such
a split has on the expected render cost as defined in Section 3.3. For example, a
view cell split often causes the child view cells to see less objects than the original
cell, so that the render cost is lower in both cells. Similarly, an object space split
can cause the resulting sub-objects to be present in the PVS of fewer view cells,
similarly reducing the overall render costs.
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3.5.2.3 Memory cost

While fine-grained partitions can reduce the render cost, they also increase mem-
ory costs. Therefore, memory costs need to be controlled. The memory cost cm

of a given set of view cells V and objects O is given by:

cm(V,O) = MV +MO +MPV S, (3.3)

where MV is the memory needed to store the view cells, MO is the memory
needed to store the objects, and MPV S is the memory for storing the PVSs, given
as follows:

MPV S = ∑
V∈V

∑
o∈PV SV

me (3.4)

based on the elementary cost me of storing one object identifier.

3.5.3 Optimization approach

We cast the partitioning problem as an optimization problem. Let {(Vi,Oi) : i ∈
N} be the set of all possible view space and object space subdivisions resulting
from splitting (we assume that there is only a finite number of possible split posi-
tions for each cell, and therefore this set is also finite). Then we look for a partition
(V,O) with cr(V,O) = mini(cr(Vi,Oi)) and cm(V,O) ≤ maxmem, i.e., we look
for the partition with the least render cost given a maximum allowed memory cost
maxmem.

Enumerating all possible partitions would be prohibitively costly, and we there-
fore follow an idea borrowed from the well-known Knapsack problem [MT90]: a
common greedy solution to the Knapsack problem always adds the element with
the highest “value per size” ratio to the Knapsack. If we interpret the render cost
decrease dR of a split as its “value”, and the memory cost increase dM of a split
as its “size”, we can follow the same strategy.

We place all potential split candidates in a priority queue and calculate the
priority of each candidate by the described ratio, i.e.,
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Figure 3.13: Illustration of a view space split. A view cell (light blue) is split by
a plane which is aligned with the wall. The PVS breaks into two parts seen from
the new view cells by the samples. Each part consists of objects seen from one of
the view cells (blue and green shadows) and both view cells (cyan shadows).

p =
dR
dM

. (3.5)

The optimization algorithm therefore proceeds by repeatedly removing the
split with the highest priority from the queue and applying it to the current par-
tition. For the newly generated cells, new potential split candidates are added
to the priority queue. This process is repeated until the maximum memory cost
is reached. How the potential split candidates are obtained is described in Sec-
tion 3.5.5.1.

Note that the algorithm does not distinguish between object space and view
space splits – they are treated equally. The memory cost increase consists of a
constant overhead of the split (new view cell or new object) on the one hand and
the number of new PVS entries following from the split on the other hand. For
example, when splitting an object, the PVS size of all view cells that see both
sub-objects will be increased by me. The evaluation of the render cost reduction

is described in the next section.

3.5.3.1 Evaluating the render cost reduction

The crucial part of the algorithm is to evaluate the render cost reduction dR result-
ing from subdividing either view space or object space.
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Figure 3.14: Illustration of an object space split. A spherical object inside a tube-
like structure is subdivided into two parts shown in blue and green. In this example
the view cells which see the object (by the samples) break into two disjoint sets.

View space splits The render cost of a single view cell is defined as:

cr(V ) = p(V )r(PV SV ). (3.6)

When subdividing a view cell V by a splitting plane, the render cost reduction
is given by the difference of the render cost of the new view cells and the old one:

dR(V ) = cr(Vb)+ cr(Vf )− cr(V ) (3.7)

where Vb and Vf are back and front fragments of the view cell V with respect
to the splitting plane. The view space split is illustrated in Figure 3.13.

Object space splits To evaluate the render cost reduction when splitting an ob-
ject, we first need to know from which view cells the object and its new fragments
can be seen. We denote the set of view cells which can see an object O as PV SO.
The expected render cost of an object is then expressed as:

cr(O) = ∑
V∈PV SO

r(O,V )p(V ) (3.8)

where p(V) is the probability of the view point being located in view cell V

and r(O,V ) is the render cost of the object O seen from view cell V .
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When subdividing an object O, the render cost reduction is given by:

dR(O) = cr(Ob)+ cr(O f )− cr(O) (3.9)

where Ob and O f are the back and front fragments of the object. The object
space split is illustrated in Figure 3.14.

3.5.4 Visibility sampling

We gain information about global visibility in the scene by creating and using
visibility samples used to estimate PVSs as described in Section 3.2. In the further
steps of the algorithm, each sample is associated with an object resulting from the
object space subdivision as well as a list of view cells resulting from the view
space subdivision.

3.5.4.1 Dealing with visibility undersampling

Every leaf of the view space and object space hierarchies is associated with a set
of visibility samples. For a view space node, this list consists of rays that intersect
the corresponding view cell. For an object space node, this list consists of rays
which are associated with triangles contained in the node. The PVS of a view
space node (PV SV ) is enumerated as the union of all objects seen by the rays
associated with the node. The PVS of an object space node (PV SO) is enumerated
as the union of all view cells intersected by the associated rays.

In the beginning of the subdivision there are many visibility samples per node
and the accuracy of the PVS estimation is relatively high. As the subdivision
proceeds, there are less and less samples per node, and consequently the accuracy
of the PVS estimation drops. As a result the estimated PVSs in the leaves can be
significantly smaller than the real PVSs which would be obtained with an exact
visibility solver.

To compensate for this visibility undersampling, we compute an undersam-

pling factor for each subdivided node based on the number of rays intersecting
the node and the size of the associated estimated PVS. This factor expresses the
credibility of the PVSs computed for child nodes using the associated rays. We
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Figure 3.15: Establishing the split candidate for a view space node. The split
planes are placed at the end-points of visibility samples inside the view cell and
intersections of visibility samples with the view cell boundary. Then we pick the
plane with highest priority as a split candidate for this node. The example shows
only the split positions evaluated for one axis.

use this factor to correct the PVS size estimate as well as the render cost estimate
for the nodes. The correction is done by blending the values computed using rays
with the values determined for the parent node. If the number of rays is signif-
icantly larger than the PVS size (every object is sampled by many rays), we use
the PVS and render cost without any correction. However, if the number of rays
is comparable to the PVS size (every ray sees a different object) we use the PVS
size and the render cost determined in the parent node. For cases between these
two extremes we linearly interpolate between the values determined by the rays
and those computed for the parent node.

Note that this correction is only an estimate, and therefore the total memory
cost of the PVS calculated by the actual visibility solver can be larger than the
bound maxmem.

3.5.5 Subdivision

This section describes in detail the selection of splitting planes, determination of
their processing order, and the computation of the actual splits of view space or
object space nodes.
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3.5.5.1 Establishing split candidates

Whenever a new (object space or view space) cell is generated in the subdivision,
we establish a new splitting plane candidate for this cell and add it to the priority
queue. Within the cell, we aim to find the split plane with the highest priority
according to Eq. 3.5. Both functions dR and dM have discontinuities at places of
visibility changes (changes in PVS). The visibility changes can occur only at the
end-points of the visibility samples clipped to the current node, i.e., either at an
end-point of a visibility sample due to an object within the view cell, or at the in-
tersection of a visibility sample with the view cell boundary. In order to achieve a
high chance of separating the PVS, we compute these points and evaluate the split
priorities for the corresponding split plane positions in all three axes. The split-
ting plane candidate for this node is then established at the position with highest
priority. The selection of split plane candidate is illustrated in Figure 3.15.

To efficiently calculate the priorities for all positions, we use a sweeping plane
algorithm as described in Section 3.4. We sort the positions and sweep the splitting
plane along these positions. At every position of the plane, we compute the PVS
incrementally by counting the references to objects seen by rays on both sides of
plane. The priority for each position is then computed from the PVS using the
formulas given in Section 3.5.3.1.

3.5.5.2 Processing split candidates

The split candidates established for every leaf of the current subdivision have to
be processed in the order of descending priority. The basic algorithm described
so far would just use a single priority queue of the candidates, pick the candidate
with best priority, split the corresponding node and put split candidates for the
newly created nodes into the priority queue. However, a view space split induces
a change of the priorities of object space split candidates and vice versa. The
affected candidates are those which could see the node that was split, i.e., those
which are connected with that node with at least one ray. The priorities of the
affected candidates have to be reevaluated and their position in the priority queue
has to be updated. In the extreme case, a split of a single view space or object
space node can affect all of the split candidates from the other domain (i.e., either
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view space or object space).

In order to cope with this situation, we exploit the following observation: when
performing a split, the priority of other candidates in the queue remains valid if
they are from the same domain as the split. This follows from the fact that the cost
evaluation of disjoint nodes of the same domain is independent (at least for simple
types of render cost evaluation functions). This means that recomputation is only
necessary when switching domains from object to view space or vice versa. We
use this observation to reduce the number of recomputations of split candidate
priorities. The optimized algorithm maintains separate priority queues for split
candidates of view space and object space domains and proceeds as follows:

Initially we take the split candidate with the highest priority by comparing
the fronts of the view space and object space priority queues. We take at least
nmin splits from the same domain without reevaluation of split candidate priori-
ties. After nmin splits from one domain, we decide whether to switch based on
the priorities of the two queue fronts. If the priority of the current split candi-
date is lower than the best split candidate from the other domain (condition 1), we
recalculate the priorities of the candidates and decide whether to switch the do-
mains. Otherwise we continue subdividing in the current domain until condition 1
is met or we reach nmax splits (condition 2). nmax is a safety criterion ensuring that
reevaluation is made with sufficient frequency. As a result the number of steps
without reevaluating the split candidate priorities is in the range (nmin,nmax).

Even when processing the splitting planes in batches, the update of all affected
split candidates per batch is expensive. The deeper the subdivision, the more
candidates have to be updated. To further reduce the number of recomputations
of priorities, we only update a subset of split candidates. This subset is chosen
randomly from the set of affected candidates.

We found that using a range of (nmin,nmax) = (100,900), and updating 2000
candidates per batch gives stable results. The final ratio of view space splits to
object space splits is nearly independent from the range of nmin and nmax. The
chosen settings are quite conservative, so taking less repair candidates will speed
up the algorithm without significantly impacting the efficiency of the algorithm.
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3.5.5.3 Splitting a node

The algorithm for the actual split of the node depends on the domain of the node.
If a view space node is subdivided, we split the corresponding cell into two disjoint
parts and create two new view cells (leaves of the kD-tree). Then we distribute
the associated visibility samples to the new view cells using a line segment / box
intersection tests. The visibility samples are used to compute the split candidates
for the newly created nodes and their priorities. These split plane candidates are
then inserted into the view space priority queue.

If an object space node is subdivided, we partition the triangles of the subdi-
vided cell (object) into two disjoint sets based on the position of their center of
mass with respect to the splitting plane. Then we distribute the visibility samples
according to the position of the triangles stored with the rays in the child nodes.
Similarly as for the view space splits, the visibility samples are used to compute
the split plane candidates for the newly created nodes as well as their priorities.
These split candidates are then inserted into the object space priority queue.

3.5.5.4 Initiating the subdivisions

Consider the situation that the whole view space is represented by a single view
cell and all scene geometry is represented as a single object. If the view space and
the object space are not disjoint, no reduction of the render cost can be achieved
by either object or view space split, because either the view cell would intersect
both new objects (which are then trivially contained in the PVS), or the single
object would be contained in the PVSs of both new view cells because there is no
other object which could act as an occluder.

In order to provide our heuristics some useful information about render cost
reduction, we initiate the algorithm with coarse object space and view space sub-
divisions. The initial view space subdivision uses spatial median subdivision with
cycling axis. The object space subdivision is performed using the SAH.

Alternatively the object space subdivision can apply a logical partition based
on the size of the triangles or materials and shaders. A subdivision based on the
size of the triangles separates large objects from small ones, which allows better
separation of nodes of the constructed bounding volume hierarchy [KS06]. The
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Figure 3.16: Snapshot of the Arena scene from the outside (left) and inside the
dome (right).

initial partition according to materials and shaders has the advantage of keeping a
limited number of shaders per leaf of the bounding volume hierarchy. In case of
subdividing according to all materials and shaders, all the triangles contained in a
leaf of the bounding volume hierarchy can be displayed with a single render call.

Note that in general the initial logical partitions do not provide a good spatial
separation of objects per se – the volumes corresponding to leaves of the hierarchy
can largely overlap and even span the whole object space.

3.5.6 Results

We have evaluated the proposed method on two different scenes. The first scene
(Vienna) represents 8km2 of the city of Vienna. The second scene (Arena) is a
model of Sazka-Arena – a multipurpose stadium in Prague (courtesy of Digital
Media Production a.s.) (see Figure 3.16). The Vienna scene consists of houses
with windows and balconies, pavements, and roads. The Arena scene represents
both the interior and the exterior of the stadium. The interior has high depth com-
plexity (apart from the large open spaces, the building contains about 1000 rooms)
and includes many instances of coarsely modeled objects such as chairs and ta-
bles. The Vienna scene contains 1M triangles, the Arena scene 1.5M triangles.

For both scenes we measured the dependence of the render cost estimate on
the memory cost of the constructed subdivisions. As a reference for comparison,
we used a method which initially subdivides object space using the surface area
heuristics up to a specified number of objects, and then applies the visibility-
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Figure 3.17: Render cost vs. memory cost curves for Vienna (left) and Arena
(right). (top) Original curves, computed with 6M visibility samples. (center) Eval-
uation curves, computed with 3M visibility samples and measured using 160M
evaluation samples. (bottom) Evaluation curves, computed with 6M visibility
samples and measured using 160M evaluation samples.
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Figure 3.18: (left) Evaluation of the ratio of the total number of view cells and ob-
jects during the subdivision of Arena. (right) Histogram showing amount of view
space volume in a particular range of render cost for the subdivision of Vienna.

driven view cell construction from Section 3.4 to subdivide view space. We used
different termination criteria of the initial object space subdivision (10k and 60k
objects) to observe the dependence of the reference method on this parameter.

For both test scenes the subdivisions were constructed with 3M, and 6M visi-
bility samples, respectively. We terminated the subdivisions when they reached a
specified memory budget (35MB). After the construction of the subdivisions, we
also evaluated the quality of the subdivision by casting a large number of visibil-
ity samples and recomputing the render cost and memory cost curves. We used
160M evaluation samples for both scenes. The results of these measurements are
summarized in Figure 3.17. Our new method is labeled INT (interleaved) and the
reference method is labeled SEQ (sequential) together with a number expressing
the number of objects in the initial object space partition. We used a 2.2 GHz Dell
Inspiron 9300 notebook with 2GB RAM for computing the results.

The middle and rightmost plots in Figure 3.17 show the evaluation of the sub-
divisions using 160M samples. We can see that the number of samples has signif-
icant influence on the results. Our method profits from increasing the number of
samples from 3M to 6M in both scenes. On the other hand, the reference methods
are sensitive to the larger number of samples only in Arena. It is hard to tell which
would be the optimal number of samples for a certain scene. Our experiments in-
dicate that with 6M samples, satisfactory results can be achieved for typical scenes
such as the ones shown.

To analyze the behavior of the compared methods, we measured the ratio of the
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Scene Method Time Memory View cells Objects Render cost Speedup
SEQ-10k 25 m 60 MB 11000 10000 81999.2 1.67

Vienna SEQ-60k 21 m 60 MB 3000 60000 58149.2 1.18
INT 212 m 60 MB 3106 60894 49221.9 –

SEQ-10k 33 m 80 MB 15500 10000 24631.4 2.53
Arena SEQ-60k 29 m 80 MB 5500 60000 12825.7 1.32

INT 106 m 80 MB 5305 57195 9745.91 –

Table 3.2: Summary of results for Vienna and Arena scenes.

total number of view cells and objects during the subdivision process (Figure 3.18-
(left)). This ratio is monotonically growing for the reference methods, whereas
for the new method it adapts to the visibility properties of the scene. Interestingly,
after a steady falloff the ratio increases again at the end of the subdivision.

The results show that with a sufficient number of visibility samples, the pro-
posed method provides a consistent reduction of the average render cost at any
given memory cost when compared to the reference methods. The render cost re-
ductions for selected memory budgets are summarized in Table 3.2. Compared to
the reference methods we obtained speedups of 16–68% for Vienna and 32–153%
for Arena. Note that the speedup is based on the average render cost, a quantity
which is smoothed over all view space, whereas locally the speedup can be much
higher. For example, both scenes contain some large irreducible view cells which
prevent large variations in the average render cost, therefore the speedups shown
are quite significant. This fact is illustrated in Figure 3.18-(right), which depicts
the histogram showing the distribution of render cost over the view space volume
for Vienna. It can be seen that for the new method, significantly more volume is
covered by lower render cost. We can see from Table 3.2 that our method requires
several times more computation time than the sequential methods. However, to
find a good subdivision using a sequential method, it would have to be evaluated
several times for different numbers of objects, which would be even more costly.
Most of the computation time of our method is spent evaluating local split planes
for the view space splits, the cost of which highly depends on the number of vis-
ibility samples. A viable alternative is to use only mid splits, which speeds up
computations a lot. Visualizations of the resulting subdivisions for both scenes
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Figure 3.19: Visualization of the view / object space partitions in the Vienna scene
(left) and the Arena scene (right). Each colored patch represents one object from
the PVS. We show a cut through the 3D view space subdivision. The view cells
are colored from blue (low render cost) to magenta (high render cost).

can be seen in Figure 3.19.

3.6 Conclusions

In this chapter we discussed scene preprocessing into meaningful view cells and
objects for subsequent PVS computations. We first gave a general overview of the
properties of view space and object space, how they are connected and how this re-
lates to visibility computations. Furthermore, we described our novel global view
space sampling process which we use to collect the coarse visibility information
that drives our algorithms.

Next we discussed our specific algorithms for solving two problems of this
area. Both methods use a cost model in order to minimize the expected render
cost of the resulting PVSs. The model is based on our global visibility estimation
determined by sampling. The first algorithm deals with automatic view cell gen-
eration, and the second algorithm deals with a combined generation of optimal
view space and object space partitions. The latter problem is much harder be-
cause of the interconnectivity of view and object space regarding the render time
and storage cost.

For the automatic view cell generation algorithm, we have shown that the
method provides efficient sets of view cells for both indoor and outdoor envi-
ronments. Since we use the actual visibility of the scene for driving the view cell
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construction, our view cells adapt to scene visibility changes. This is important
for example for regions with no geometry, where other cell construction methods
can fail. As a result of the view cell construction we obtain more than a fixed set
of view cells. Depending on the properties of the visibility preprocessing algo-
rithm or a runtime storage budget, we can extract a specified number of view cells
which provide an optimized partition for a given granularity.

Then we have presented in detail our new tool which allows constructing an
optimized subdivision of both view space and object space for preprocessed visi-
bility. This method extends the previous algorithm by treating view space and ob-
ject space partitioning together and progressively refining both subdivisions while
minimizing the associated render and memory costs. Contrary to previous tech-
niques, both subdivisions are driven by the actual visibility in the scene. This
allows a better adaptation to the visibility distribution within the view space and
the object space.

In the future we would like to improve our model of render cost. In particu-
lar we want to integrate the cost of state changes due to materials and textures in
the algorithms. Further we want to deal with the issue of determining how many
samples to use, by implementing an adaptive version that starts with a low num-
ber of samples and casts more samples on demand. We are also working on an
algorithm which uses the scalability of the subdivisions for rapid sampling-based
global visibility precomputation.
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Our memory is our coherence,

our reason, our feeling, even

our action. Without it, we are

nothing.

Luis Buñuel
4

CHC++: Coherent Hierarchical

Culling Revisited

In the previous chapter we discussed algorithms that prepare the scene for vis-
ibility preprocessing. In this chapter, we switch our topic to online occlusion
culling, which requires zero preprocessing time, and can handle dynamic scenes.
We present a new algorithm for efficient occlusion culling using hardware oc-
clusion queries. The algorithm significantly improves on previous techniques by
making better use of temporal and spatial coherence of visibility. This is achieved
by using adaptive visibility prediction and query batching. As a result of the new
optimizations, the number of issued occlusion queries and the number of render-
ing state changes are significantly reduced. We also propose a simple method for
determining tighter bounding volumes for occlusion queries and a method which
further reduces the pipeline stalls. The proposed method provides up to two or
three times speedup over the previous state of the art. The new technique is sim-
ple to implement, does not rely on hardware calibration and integrates well with
modern game engines.

4.1 Introduction

Occlusion culling is an important technique to reduce the time for rendering com-
plex scenes. The availability of so-called hardware occlusion queries has made
runtime determination of visibility attractive. Hardware occlusion queries are a

121



Chapter 4. CHC++: Coherent Hierarchical Culling Revisited

 0

 10

 20

 30

 40

 50

 60

 70

 80

 50  100  150  200  250  300  350

Time

Frame

NOHC

VFC

CHC

CHC++

Frame

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

Time (ms)

CHC

CHC++

NOHC

VFC

 800  900  1000  1300 1200 1100
 1

Figure 4.1: Frame time comparison for a walkthrough of the Powerplant model
for View-Frustum Culling (VFC), Coherent Hierarchical Culling (CHC), Near
Optimal Hierarchical Culling (NOHC), and our new algorithm (CHC++).

mechanism by which graphics hardware can quickly report the visibility status of
simple proxy geometry. However it was only by exploiting temporal coherence,
e.g. in the Coherent Hierarchical Culling (CHC) algorithm [BWPP04], that using
hardware occlusion queries became feasible, as this avoids CPU stalls and GPU
starvation.

The CHC algorithm works well in densely occluded scenes, but the over-
head of hardware occlusion queries makes it fall behind even simple view-frustum
culling (VFC) in some situations. This was recognized by Guthe et al. [GBK06],
who provide an algorithm, called Near Optimal Hierarchical Culling (NOHC),
which reduces the number of queries based on a clever statistical model of occlu-
sion and a hardware calibration step. However, it turns out that even the optimum
defined by Guthe et al. can still be improved by exploiting further sources of
simplification.

In this chapter, we propose CHC++, a method that significantly improves on
previous online occlusion culling methods (see Figure 4.1). The core of the algo-
rithm remains simple, requires no calibration, and allows easy integration into a
game engine. The major contributions of the method are:

• Reduction of state changes. Despite its importance, the reduction of state
changes was not explicitly addressed by previous occlusion culling meth-
ods. Our method provides a powerful mechanism to minimize the number
of state changes by using batching of queries. As a result the total num-
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Figure 4.2: From left to right: (1) A sample view point in a city scene. (2) State
changes required by the CHC algorithm (number of state changes = number of
different colors of hierarchy nodes). (3) State changes required by the CHC++
algorithm. (4) Multiqueries: all invisible nodes are covered by only two occlusion
queries (shown in different colors).

ber of state changes is reduced by more than an order of magnitude (see
Figure 4.2).

• Reduction of number of queries. Reducing the number of queries was
a major goal of previous research on hardware based occlusion culling.
For example, the NOHC algorithm proposed by Guthe et al. [GBK06] is
very successful at reducing the number of queries for views with low occlu-
sion. We propose two new methods for further reduction of the number of
queries. The first method resolves visibility of many nodes in the hierarchy
by a single query, the second method exploits tighter bounding volumes for
the queries without the need for any auxiliary data structures like oriented
bounding boxes or k-dops. As a result we achieve a significantly lower num-
ber of queries than the “optimal” algorithm defined by Guthe et al. [GBK06]
(see Figure 4.2).

• Reduction of CPU stalls. The CHC algorithm does a good job at reducing
CPU stalls, however in certain scenarios stalls still occur and cause a perfor-
mance penalty. We propose a simple modification which provides further
reduction of the wait time, which at the same time integrates well with our
method for reducing state changes.

• Reduction of rendered geometry. Tighter bounding volumes will reduce
the overestimation of visibility caused by bounding volumes and therefore
reduce the amount of geometry classified as visible.
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• Integration with game engines. Most game engines incorporate a highly
optimized rendering loop in which sorting by materials and shaders is per-
formed in order to minimize rendering state changes. Our method allows
the rendering engine to perform such a sort on a batch of primitives stored in
a render queue. Additionally the proposed technique significantly reduces
the number of engine calls.

4.2 Overview

Since the CHC algorithm [BWPP04] and the NOHC algorithm [GBK06] are es-
sential to our work on online occlusion culling, we review them and discuss some
of their issues. Then we describe the major components of the new CHC++ algo-
rithm.

4.2.1 CHC and its problems

The Coherent Hierarchical Culling algorithm [BWPP04] makes use of temporal
and spatial coherence to reduce the overhead and latency of hardware occlusion
queries. It traverses the hierarchy in a front-to-back order and issues queries only
for previously visible leaves and nodes of the previously invisible boundary. Pre-
viously visible leaves are assumed to stay visible in the current frame, and hence
they are rendered immediately. The result of the query for these nodes only up-
dates their classification for the next frame. The invisible nodes are assumed to
stay invisible, but the algorithm retrieves the query result in the current frame in
order to discover visibility changes. Refer to Figure 4.6 for the pseudocode of the
original original CHC algorithm (unmarked parts).

The reduction of the number of queries (queries are not issued on previously
visible interior nodes) and clever interleaving reduced the overhead of occlusion
queries to an acceptable quantity. The algorithm works very well for scenarios that
have a lot of occlusion. However, on newer hardware where rendering geometry
becomes cheap compared to querying, or view points where much of the scene
is visible, the method can become even slower than conventional view-frustum
culling. This is a result of wasted queries and unnecessary state changes. This
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problem makes the CHC algorithm less attractive for game developers, who call
for an algorithm which is reliably faster than view-frustum culling. Another prob-
lem of CHC lies in the complicated integration of the method into the rendering
loop of highly optimized game engines. CHC interleaves rendering and querying
of individual nodes of the spatial hierarchy, which does not allow the engine to
perform material sorting and leads to a higher number of engine API calls.

4.2.2 NOHC and its problems

The Near Optimal Hierarchical Culling algorithm proposed by Guthe et
al. [GBK06] tackles the problem of wasted queries. The method uses a calibrated
model of graphics hardware to estimate costs of the queries and costs of render-
ing. It estimates occlusion of nodes by using a simple screen coverage model
and further corrections assuming temporal coherence. The occlusion estimation
and hardware model are used in a cost/benefit heuristics which decides whether
to apply an occlusion query on the currently processed node. This heuristic uses
a sophisticated reasonability test for queries with a couple of rules.

The algorithm saves a significant number of queries, especially queries which
would be applied on visible nodes. This can lead to a significant improvement over
the CHC algorithm if the “assumed visibility” optimization proposed for CHC is
not used. This optimization assumes nodes to stay visible for a given number of
frames, testing the nodes periodically according to that number and skipping the
queries in between.

The results for NOHC indicate that with a proper hardware calibration, the
method always performs better than view-frustum culling. In their paper, Guthe
et al. [GBK06] also defined a theoretical optimal culling algorithm based on oc-
clusion queries. The optimal algorithm is derived under the assumption that the
status of every invisible node has to be verified by an occlusion query. The NOHC
method then closely approaches the optimal algorithm.

We show that the definition of optimality used by Guthe et al. [GBK06] still
leaves significant room for improvement. In fact, the CHC++ algorithm is always
clearly below the optimum defined by Guthe et al.

NOHC requires a hardware calibration step in which the hardware parameters
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are measured in a preprocess using artificial rendering scenarios. Measuring ac-
curate parameters of the model requires very careful implementation. However, it
turns out that even if precisely implemented, these measurements need not reflect
the complex processes of state changes, pipelining, and interleaving rendering and
occlusion queries during actual walkthroughs. Our new method does not rely on
hardware calibration and aims to minimize its dependence on external parameters.
In fact it leaves the user with loosely setting a few parameters whose influence is
well predictable.

4.3 Our algorithm

4.3.1 Building blocks of CHC++

The new CHC++ algorithm method addresses all previously mentioned problems,
and extends CHC by including the following new components:

Queues for batching of queries. Before a node is queried, it is appended to
a queue. Separate queues are used for accumulating previously visible and pre-
viously invisible nodes. We use the queues to issue batches of queries instead of
individual queries. This reduces state changes by one to two orders of magnitude.
The batching of queries will be described in Section 4.3.2.

Multiqueries. We compile multiqueries (Section 4.3.3.1), which are able to
cover more nodes by a single occlusion query. This reduces the number of queries
for previously invisible nodes up to an order of magnitude.

Randomized sampling pattern for visible nodes. We apply a temporally
jittered sampling pattern (Section 4.3.3.2) for scheduling queries for previously
visible nodes. This reduces the number of queries for visible nodes and while
spreading them evenly over the frames of the walkthrough.

Tight bounding volumes. We use tight bounding volumes (Section 4.3.4)
without the need for their explicit construction. This provides a reduction of the
number of rendered triangles as well as a reduction of the number of queries.

Previously frustum-culled nodes. The original CHC algorithm loses coher-
ence if a node was previously view-frustum culled. This issue can be solved
by using the original classification of a node before it was frustum culled (Sec-
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tion 4.3.5).

Note that for all tests presented in the paper we used an axis-aligned bound-
ing volume hierarchy (BVH) constructed according to the surface area heuris-
tics [MB90, Hav00]. The presented methods are however compatible with other
types of spatial hierarchies [MBM∗01], except for the tight bounding volumes
optimization, which explicitly exploits the properties of BVH.

4.3.2 Reducing state changes

Changes of rendering state constitute a significant cost in the rendering pipeline.
Previous occlusion culling methods focused mainly on scheduling the queries in
a way that hides latencies and keeps the GPU occupied, as well as reducing the
overall number of queries. However, even if the number of queries is reduced, ev-
ery remaining query potentially leads to a state change in which at least writing to
color and depth buffers is disabled and then re-enabled after the query. If complex
shaders are used then this state change also involves switching the shader on and
off.

It turns out that these changes of rendering state cause an even larger overhead
than the query itself. The overhead may be on the hardware side (e.g., flush-
ing caches), on the driver side or even on the application side. Thus it is highly
desirable to reduce the number of state changes to an acceptable amount: game
developers refer to about 200 state changes per frame as an acceptable value on
current hardware.

Query batching. Our solution to this problem is based on batching occlu-
sion queries instead of issuing queries immediately when they are requested by
the algorithm. The rendering state is changed only once per batch and thus the
reduction of state changes directly corresponds to the size of the query batches we
issue. The batching algorithm handles visible and invisible nodes differently as
described in the following sections.

4.3.2.1 Batching previously invisible queries

The invisible nodes to be queried are appended to a queue which we call i-queue.
When the number of nodes in the i-queue reaches a user-defined batch size b, we
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change the rendering state for querying and issue an occlusion query for each node
in the i-queue (in Section 4.3.3.1 we will see how several nodes can be combined
in one occlusion query in order to reduce the number of queries).

The batch size b is tightly connected with the reduction of render state changes,
giving approximately b times less state changes than the CHC algorithm. On the
other hand, batching effectively delays the availability of query results for invisi-
ble nodes, which means that visibility changes could be detected later and follow-
up queries spawned by them would introduce further latency if there is not enough
alternative work (e.g., rendering visible nodes) left.

An optimal value for b depends on the scene geometry, material shaders, and
the capabilities of the rendering engine with respect to material sorting. For our
scenes and rendering engine we observed that precise tuning of this parameter is
not necessary and that values between 20 and 80 give a largely sufficient reduction
of render state changes while not introducing additional latency into the method.

4.3.2.2 Batching previously visible queries

Recall that the CHC algorithm issues a query for each previously visible node
and renders the geometry of the node without waiting for the result of the query.
Similarly to CHC, our proposed method renders the geometry of previously vis-
ible nodes during the hierarchy traversal. However the queries are not issued
immediately. Instead the corresponding nodes are stored in a queue which we call
v-queue.

An important observation is that the queries for these nodes are not critical
for the current frame since their result will only be used in the next frame. We
exploit this observation by using nodes from the v-queue to fill up waiting time:
whenever the traversal queue is empty and no outstanding query result is available,
we process nodes from the v-queue.

As a result we perform adaptive batching of queries for previously visible
nodes driven by the latency of the outstanding queries. At the end of the frame,
when all queries for previously invisible nodes have been processed, the method
just applies a single large batch for all unprocessed nodes from the v-queue.

Note that before processing a node from the v-queue, we also check whether
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Figure 4.3: Different queues used by the CHC++ algorithm. The queues which
were not used by the CHC algorithm are highlighted in blue.

a render state change is required. It turns out that in the vast majority of cases
there is no need to change the render state at all as it was already changed by a
previously issued query batch for invisible nodes. Therefore, we have basically
eliminated state changes for previously visible nodes.

As a beneficial side effect, the v-queue reduces the effect of violations of the
front-to-back ordering made by the original CHC algorithm. In particular if a
previously hidden node occludes a previously visible node in the current frame,
this effect would only be captured in the next frame, as the previously visible node
would often be queried before the previously invisible node is rendered. This issue
becomes apparent in situations where many visibility changes happen at the same
time. Delaying the queries using the v-queue will make it more likely for such
visibility changes to be detected.

The overview of the different queues used by the CHC++ algorithms is shown
in Figure 4.3. Note that the overlaid nodes in the query queue correspond to
multiqueries, which will be discussed in Section 4.3.3.1.

4.3.2.3 Game engine integration

For easy integration of the CHC++ method into existing game engines we propose
to use an additional queue in the algorithm which we call render queue. This
queue accumulates all nodes scheduled for rendering and is processed when a
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batch of queries is about to be issued. When processing the render queue the
engine can apply its internal material shader sorting and then render the objects
stored in the queue in the new order. Another beneficial effect of the render queue
is the reduction of engine API calls. These calls can be very costly and thus their
reduction provides significant speedup as we experienced for example with the
popular Ogre3D game engine [Jun06].

4.3.3 Reducing the number of queries

Recent online occlusion culling methods focused on reducing the number of oc-
clusion queries in order to reduce their overhead. In particular the method of
Guthe et al. [GBK06] proposed a sophisticated approach for eliminating queries
based on a cost/benefit heuristics and a calibrated model of the graphics hardware.
In this section we propose two new methods which are able to reduce the number
of queries even below the hypothetical algorithm previously defined as optimal by
Guthe et al.

4.3.3.1 Multiqueries for invisible nodes

All previous techniques use one occlusion query per previously invisible primitive
to be tested (node in a hierarchy, bounding volume, cell in a grid). The occlusion
queries for these nodes were considered irreducible.

However, the following observation allows us to reduce the number of queries
even for previously invisible nodes: If some previously invisible part of a scene
remains invisible in the current frame, a single occlusion query for the whole part
is sufficient to verify its visibility status. Such a query would render all bounding
boxes of primitives in this scene part, and return zero if all primitives remain
occluded. For example, in the extreme case of a static scene and a static view
point, a single occlusion query could be used for all invisible parts of the scene.

Assuming a certain coherence of visibility, our new technique aims to identify
such scene parts by forming groups of previously invisible nodes that are equally
likely to remain invisible. A single occlusion query is issued for each such group,
which we call a multiquery. If the multiquery returns zero visible fragments, all
nodes in the group remain invisible and their status has been updated by the single

130



4.3. Our algorithm

query. Otherwise the coherence was broken for this group and we issue individual
queries for all nodes by reinserting them in the i-queue. Note that in the first
case the number of queries is reduced by the number of primitives in the group.
However, in the second case the multiquery for the batch was wasted.

We use an adaptive mechanism based on a cost/benefit heuristics to find suit-
able node groupings. The crucial part of the evaluation is the estimation of co-
herence in the visibility classification of the nodes, which is described in the next
section. The actual heuristics will be described in Section 4.3.3.1.

The multiqueries provide another step towards output sensitivity of the algo-
rithm: large static invisible parts of the scene are culled very quickly and most of
the effort is spent on the parts of the scene that are visible or frequently change
their visibility classification.

Estimating coherence of visibility In the vast majority of cases there is a strong
coherence in visibility for most nodes in the hierarchy. Our aim is to quantify this
coherence. In particular, knowing the visibility classification of a given node, we
aim to estimate the probability that this node will keep its visibility classifica-
tion in the next frame. Our experiments indicate that there is a strong correlation
of this value with the “history” of the node, i.e., with the number of frames the
node already kept the same visibility classification (we call this value visibility

persistence). Nodes that have been invisible for a very long time are likely to stay
invisible. Such nodes could be the engine block of a car, for example, that will
never be visible unless the camera moves inside of the car engine. On the contrary,
even in slow moving scenarios, there are always some nodes on the visible border
which frequently change their classification. Hence there is a quite high chance
for nodes that recently became invisible to become visible soon.

We define the desired probability as a function of the visibility persistence i,
and approximate it based on the history of previous nodes:

pkeep(i)≈
nkeep

i

nall
i

, (4.1)

where nkeep
i is the number of already tested nodes which have been in the same

state for i frames and keep their state in the i + 1-th frame, and nall
i is the total
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Figure 4.4: pkeep(i) in dependence on visibility persistence i. Note that the ana-
lytic function from Eq. 4.2 closely matches the functions measured for Powerplant
and Vienna scenes.

number of already tested nodes which have been in the same state for i frames.
Figure 4.4 shows a plot of the probability pkeep against the visibility persistence
i. The counters nkeep

i and nall
i are accumulated over all previous frames of the

walkthrough.

In the first few frames there are not enough measurements for accurate com-
putation of pkeep(i), especially for larger values of i. We solve this problem by
piecewise constant propagation of the already computed values to the higher val-
ues of pkeep(i).

As a simpler alternative to evaluating pkeep(i) by measurements, we propose
an analytic formula which corresponds reasonably well to the functions we mea-
sured for our scenes and walkthroughs:

pkeep(i)≈ 0.99−0.7e−i. (4.2)

Using this function does not provide as accurate estimations of pkeep as the
measured function, but can be used to avoid implementing the evaluation of the
measured function. Figure 4.4 illustrates the analytic function and the measured
functions for two different scenes.

Cost/benefit model for multiqueries Determining the optimal size of a multi-
query for previously invisible nodes in a given batch (i.e., the i-queue) is a global
optimization problem that requires evaluation of all possible partitions of the batch
into multiqueries. Instead, we use a greedy model which maximizes a benefit/cost
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ratio for each multiquery.

The cost is the expected number of queries issued per one multiquery, which
is expressed as:

C(M) = 1+ p f ail(M)∗ |M|, (4.3)

where p f ail(M) is the probability that the multiquery fails (returns visible, in
which case all nodes have to be tested individually) and |M| is the number of nodes
in the multiquery. Note that the constant 1 represents the cost of the multiquery it-
self, whereas p f ail(M)∗ |M| expresses the expected number of additionally issued
queries for individual nodes. The probability p f ail is calculated from the visibility
persistence values iN of nodes in the multiquery as:

p f ail(M) = 1− ∏
∀N∈M

pkeep(iN). (4.4)

The benefit of the multiquery is simply the number of nodes in the multiquery,
i.e. B(M) = |M|.

Given the nodes in the i-queue, the greedy optimization algorithm maximizes
the benefit at the given cost. We first sort the nodes in descending order based on
their probability of staying invisible, i.e. pkeep(iN). Then, starting with the first
node in the queue, we add the nodes to the multiquery and at each step we evaluate
the value V of the multiquery as a benefit/cost ratio:

V (M j) =
B(M j)
C(M j)

. (4.5)

It turns out that V reaches a maximum for a particular M j and thus j cor-
responds to the optimal size of the multiquery for the nodes in the front of the
i-queue. Once we find this maximum, we issue the multiquery for the correspond-
ing nodes and repeat the process until the i-queue is used up. As a result we
compile larger multiqueries for nodes with high probability of staying invisible
and small multiqueries for nodes which are likely to turn visible.
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4.3.3.2 Skipping tests of visible nodes

The original CHC algorithm introduced an important optimization in order to re-
duce the number of queries on previously visible nodes. A visible node is assumed
to stay visible for nav frames and it will only be tested in the frame nav + 1. This
optimization effectively reduces the average number of queries for previously vis-
ible leaves by a factor of nav +1.

This simple method however has a problem that the queries can be temporally
aligned. This query alignment becomes problematic in situations when nodes
tend to become visible in the same frame. For example consider the case when
the view point moves from the ground level above the roof level in a typical city
scene, causing many nodes to become visible in the same frame. Afterwards the
queries of those nodes will be scheduled for the nav +1-th frame, and thus most of
the queries will be aligned again. The average number of queries per frame will
still be reduced, but the alignment can cause observable frame rate drops.

We observed that a randomization of nav +1 by a small random value−rmax <

r < rmax does not solve the problem in a satisfying manner. The problem is that if
the randomization is small, the queries might still be very much aligned. On the
other hand, if the randomization is big, some of the queries will be processed too
late and thus the change from visible to invisible state will be captured too late.

We found that the most satisfying solution is achieved by randomizing the
first invocation of the occlusion query. After a node has turned visible, we use a
random value 0 < r < nav for determining the next frame when a query will be
issued. Subsequently, if the node was already visible in the previous test, we use
a regular sampling interval given by nav.

We experimented with various values of nav. The optimal value depends on the
scene itself, inspection coherence, hardware parameters as well as the rendering
engine parameters. Fortunately, our tests show that the dependence is not very
strong and a value of 5−10 has been a safe and robust choice for all tests.

4.3.4 Tight bounding volumes

Apart from the overhead introduced by occlusion queries, the success of a culling
algorithm depends strongly on how tightly the bounding volumes in the spatial
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Figure 4.5: Tight bounding volumes for nodes of the BVH which more closely
represent the objects shown as spheres. The tight bounding volume consists of
bounding boxes of the children (red) instead of the parent box (white).

hierarchy approximate the contained geometry. If the fit is not tight enough, many
nodes will be classified as visible even though the contained geometry is not.
There are several techniques for obtaining tight bounding volumes, mostly by
replacing axis- aligned bounding boxes by more complex shapes. While these
methods could directly be applied to most occlusion culling algorithms, they also
constitute an overhead of calculating and maintaining these volumes. This can
become costly especially for dynamic scenes.

We propose a simple method for determining tight bounds for inner nodes in
the context of hardware occlusion queries applied to an arbitrary bounding volume
hierarchy. For a particular node we determine its tight bounding volume as a col-
lection of bounding volumes of its children at a particular depth (see Figure 4.5).

It turns out that when using up-to-date APIs for rendering the bounding vol-
ume geometry (e.g., OpenGL vertex buffer objects), a slightly more complex ge-
ometry for the occlusion query practically does not increase its overhead. How-
ever, there might be a penalty for rasterizing the tight bounding volumes when
some of the smaller bounding primitives overlap in screen space, thus increas-
ing the fill rate compared to projecting the original bounding volume of the node.
To avoid such a case, we use a simple test to ensure the usefulness of the tight
bounds. When collecting the child nodes for the tight bounding volume, we test
if the sum of surface areas of the bounding volumes of the children is not larger
than smax times the surface area of the parent node (note that this does not depend
on a particular view point). If this is the case, we terminate traversal and do not
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further refine the bounding representation. We terminate the search for bounding
volumes if the depth from the node is greater than a specified maximal depth dmax.
The following values gave good results in our tests: dmax = 3, smax = 1.4.

Note that it is advantageous to determine the tight bounding volumes also
for leaves of the hierarchy. This can be easily achieved by building a slightly
deeper hierarchy and then marking interior nodes of the hierarchy containing less
than a specified number of triangles as virtual leaves, i.e., interior nodes that are
considered as leaves during traversal.

As a result, tight bounding volumes provide several benefits at almost no cost:
(1) earlier culling of interior nodes of the hierarchy, (2) culling of leaves which
would otherwise be classified as visible, (3) increase of coherence of visibility
classification of interior nodes. The first property leads to a reduction of the num-
ber of queries. The second property provides a reduction of the number of ren-
dered triangles. Finally, the third benefit avoids changes in visibility classification
for interior nodes caused by repeated pull-up and pull-down of visibility.

4.3.5 Previously frustum-culled nodes

We always classify previously frustum-culled nodes as invisible in the original
CHC algorithm, hence coherence is lost for these nodes. This can be problematic
in situations with quick rotations of the viewer, and can lead to frame rate drops.
It is not beneficial to treat all the previously frustum-culled nodes as visible either.
We propose to keep the visibility classification of the nodes before it was frustum
culled, assuming that the visibility status of the nodes has not changed if no further
information is available. If a node has been part of an invisible subtree we classify
it as invisible. Likewise, we handle the case that a node has been visible.

This method requires to store an additional previously frustum culled flag to
indicate if a node has newly entered the view frustum in the current frame. Fur-
thermore, as this flag is only set for the root node of a frustum-culled subtree, the
information has to be passed down the subtree to the leaves during traversal. Note
that we did not include this extension in the pseudocode in Figure 4.6 because it
would make the essence of the algorithm harder to understand.
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CHC++ begin
DistanceQueue.push(Root);
while !DistanceQueue.Empty() || !QueryQueue.Empty() do

while !QueryQueue.Empty() && (DistanceQueue.Empty() ||
FirstQueryFinished) do

++ while !FirstQueryFinished && !v-queue.Empty() do
++ IssueQuery(v-queue.pop();
++ N = QueryQueue.Pop();
++ HandleReturnedQuery(N);

else if !DistanceQueue.Empty() then
N = DistanceQueue.DeQueue();
N.IsVisible = false; // invisible by default
if InsideViewFrustum(N) then

if !WasVisible(N) then
QueryPreviouslyInvisibleNode(N);

else
if N.IsLeaf() then

if QueryReasonable(N) then
v-queue.push(N);

else
PullUpVisibility(N)

TraverseNode(N);

++ if DistanceQueue.Empty() then
++ // issue remaining query batch
++ IssueMultiQueries();

++ while !v-queue.empty() do
++ // remaining prev. visible node queries
++ IssueQuery(v-queue.pop());
++ while !QueryQueue.empty() do
++ N = QueryQueue.pop();
++ HandleReturnedQuery(N);

end

Figure 4.6: Pseudo-code of the CHC++ main traversal loop. The differences
to the original CHC are marked in blue.
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TraverseNode(N) begin
if IsLeaf(N) then

Render(N);
else

DistanceQueue.PushChildren(N);
N.IsVisible = false;

end
PullUpVisibility(N) begin

while !N.IsVisible do
N.IsVisible = true; N = N.Parent;

end
HandleReturnedQuery(Q) begin

if Q.visiblePixels > threshold then
++ if Q.size() > 1 then
++ QueryInvididualNodes(Q); // failed multiquery

else
if !WasVisible(N) then

TraverseNode(N);
PullUpVisibility(N);

else
N.IsVisible = false;

end
++ QueryPreviouslyInvisibleNode(N) begin
++ i-queue.push(N) ;
++ if i-queue.size() ≥ maxPrevInvisNodesBatchSize then
++ IssueMultiQueries(); // issue the query batch
++

end
++ IssueMultiQueries() begin
++ while !i-queue.Empty() do
++ MQ = i-queue.GetNextMultiQuery();
++ IssueQuery(MQ); i-queue.PopNodes(MQ);
++
++

end

Figure 4.7: Pseudo-code of selected important functions. The differences to
the original CHC are marked in blue.
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4.3.6 Putting it all together

The CHC++ algorithm aims to keep the simplicity of the CHC algorithm, with
several important add-ons. In this section we summarize the complete CHC++
algorithm and emphasize its main differences from the CHC algorithm. The pseu-
docode of the CHC++ algorithm is shown in Figure 4.6.

As in CHC, we use a priority queue for traversing the hierarchy. This queue
provides a front-to-back order of the processed nodes. Unlike CHC, the new
algorithm uses two new queues for storing nodes which should be queried (v-
queue and i-queue). These two queues are the key for reduction of rendering state
changes and compiling multiqueries.

The previously visible nodes are rendered immediately as for CHC. If they
are scheduled for testing in the current frame, they are placed in the v-queue.
The algorithm for scheduling the queries uses the discussed temporally jittered
sampling pattern to reduce the number of queries and to distribute them evenly
over frames. The queries for nodes stored in the v-queue are used to fill up the
wait time if it should occur. At the end of the frame the remaining nodes in the
v-queue form a single batch of queries.

The i-queue accumulates processed nodes which have been invisible in the
previous frames. When there is a sufficient number of nodes in the queue, we
apply a batch of occlusion queries for nodes in the i-queue while compiling them
into the multiqueries.

When integrating the method into a game engine, the visible nodes are first
accumulated in a render queue. The render queue is then processed by the engine
before a batch of queries from i-queue is about to be issued.

4.3.6.1 Handling dynamic objects

In our implementation we handle dynamic objects by generating two separate
BVH hierarchies over the same scene, one for the static geometry that is optimized
with the powerful surface area heuristic (described in Section 2.2.7), the other one
for the dynamic objects using a simple spatial median split heuristics that is quick
to evaluate. Both hierarchies are parented under a common root node, hence it
is completely transparent to any traversal algorithm that there initially have been
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Vienna Pompeii Powerplant

2,583,674 triangles 5,646,041 triangles 12,748,510 triangles
18,264 objects 44,913 objects 19,528 objects

10,535 BVH nodes 22,468 BVH nodes 17,793 BVH nodes

Table 4.1: Statistics for all scenes.

two hierarchies. Each frame we rebuild the dynamic branch of the hierarchy from
scratch. Therefore we remember the visibility classification of each object from
the last frame, and use them to reconstruct the visibility classifications of the new
hierarchy nodes by pulling up the classification of previously invisible nodes. This
method is sufficiently efficient if the number of dynamic objects is reasonably low,
e.g., in the range of some hundred dynamic objects.

For a larger number of dynamic objects, this rather brute force method could
become inefficient. In this case we suggest the following strategy: upon change
we just enlarge the bounding volumes of the dynamic hierarchy starting from the
bounding boxes of the leaves in a bottom up fashion (which is a fast operation),
so that they always fully contain the geometry. If the ratio between the area of the
bounding volume and the area of the bounding box of the containing geometry
becomes too large (i.e., the culling becomes too conservative), the corresponding
geometry is reinserted into the hierarchy. To prevent situations where too many
objects are reinserted in the same frame, we can use a lazy update: only the n worst
objects in terms of the aforementioned criterion are updated in a single frame.

4.4 Results

For all our results we used an Intel Quad Core 2.66 MHz CPU and an NVidia
8800 GTX graphics card. We tested our method on three different scenes: Vi-
enna, a typical city scene with detailed street objects and trees (2,583,674 tri-
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parameter name value
assumed visible frames 10
previously invisible nodes batch size 50
depth for testing children 3
maximal depth for tight bounds 3
maximal surface ratio for tight bounds 1.4

Table 4.2: Parameters for CHC++.

angles and 10,535 BVH nodes); Pompeii, a generated city scene with detailed
buildings (5,646,041 triangles and 22,468 BVH nodes), and the Powerplant model
(12,748,510 triangles and 17,793 BVH nodes) (refer to Table 4.1). In all plots
we consistently use the following abbreviations: VFC for View-Frustum Culling,
CHC for Coherent Hierarchical Culling, NOHC for Near Optimal Hierarchical
Culling, and CHC++ for our new method. We used the parameters listed in Ta-
ble 4.2 for all our measurements of CHC++. These parameters have been quite
optimal for all of our tests.

On a different hardware it may be necessary to adjust these parameters for
reaching optimal performance, which can be achieved with a simple tool that mea-
sures the optimal values once for each target platform by sampling a number of
view points or pieces of walkthrough. While it pays off to have large queues on
modern PC hardware where the penalty for state changes is high, it may not be
so for consoles that have a lot of potential for optimizing different parts of the
rendering process and hence also the occlusion queries.

Figure 4.1, shown in the beginning of the paper, presents a frame time compar-
ison for a walkthrough in the Powerplant. It can be seen that the CHC algorithm
performs worse than view-frustum culling for some parts of the walkthrough.
While NOHC is at least not worse than view-frustum culling, our algorithm per-
forms up to two times better than NOHC.

Figure 4.8 shows the frame times in a walkthrough in Pompeii and studies the
behavior with respect to NOHC and two artificial reference algorithms (NOHC-
OPT and OPT). The NOHC-OPT method refers to the function defined as opti-
mum by Guthe et al. [GBK06], which issues queries for all invisible nodes but
only if they are feasible according to their cost model. The OPT method refers
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Figure 4.8: Frame time comparison of NOHC, the optimal algorithm as defined
by Guthe et al. (OPT-NOHC), CHC++, and an algorithm that renders only visible
nodes without querying (OPT) in the Pompeii scene.
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Figure 4.9: The benefit of different optimizations in a walkthrough of the Pow-
erplant. We start with CHC and add one optimization at a time. The bottom
curve with all optimizations corresponds to CHC++. The abbreviations have the
following meaning: B = batching of previously visible and invisible nodes, R =
randomization, TB = tight bounds, MQ = multiqueries.

to an hypothetical algorithm that will only render the visible nodes of the hier-
archy without issuing any query. OPT therefore does not depend on the cost or
implementation of occlusion queries at all and is the fastest solution that can be
achieved with a given hierarchy. We implemented the OPT method by recording
the visibility results using the exact stop-and-wait algorithm, which does not make
use of temporal coherence, and then timing the frame rerendering it again with the
already computed visibility classification.

As claimed by the authors, NOHC is very close to the NOHC-OPT algorithm,
except for difficult view points with a lot of visible geometry. More notably,
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Figure 4.10: Dependence of the frame time on shader complexity in a walkthrough
in the Powerplant. DP refers to depth only pass, FIX to fixed pipeline shading
only, SH to a shader of moderately high complexity.

CHC++ is clearly significantly faster than NOHC-OPT practically everywhere.
Furthermore, CHC++ is approaching the OPT curve for the moderately complex
parts of the scene, which is remarkable since OPT cannot be beaten by any algo-
rithm using occlusion queries on the given hierarchy.

There is still some noticeable overhead of CHC++ compared to OPT in the
high frame time parts of the walkthrough, which correspond to views from over
the buildings where a lot of the scene becomes visible and where we have to issue
many queries to capture the changes in visibility. The rest of the time difference
is caused by an accumulation of minor things, like the overhead for maintaining
all the queues.

Figure 4.9 shows the benefit of each optimization individually in another walk-
through in the Powerplant. It is clearly visible that the batching brings the major-
ity of the benefit. Query batching already removes a lot of the query overhead,
otherwise the benefit of some of the other optimizations would be much more
prominent. The randomization is most important in situations when many nodes
become visible at once, which is well visible in the beginning of the walkthrough.
The benefit of multiqueries depends on the absolute number of previously invisi-
ble nodes, which in turn depends on the properties of the hierarchy (a deeper hier-
archy would mean more benefit from multiqueries). Note that the relative benefits
of the different optimizations can change for different hardware architectures and
rendering engines.
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Figure 4.11: Comparison of issued queries (left), state changes (middle), and the
resulting frame rates for a walkthrough in Vienna. Note that VFC does not impose
any additional state changes.

In Figure 4.10 we study how CHC++ and NOHC behave on a walkthrough in
the Powerplant with respect to shader complexity. We made three different tests:
In the first test we used a depth only pass (DP), in the second test we used the stan-
dard fixed pipeline material shading of the original Powerplant model (FIX). In
the third test we applied a moderately complex shader to all renderable geometry
(i.e., the shader has 40 texture lookups).

Note that the used walkthrough is challenging for methods that exploit coher-
ence because it has many swift changes in visibility. As can be seen, the depen-
dence on the shader complexity is very low for CHC++. NOHC shows a much
stronger dependence, performing visibly better for the depth pass than for the
shaded geometry. Still the depth pass is much slower than for CHC++. Obviously
the state changes lower the performance for the depth-only pass as well, even if it
only involves a switch of the depth write flag.

Figure 4.11 analyzes the behavior of all methods in the Vienna scene, particu-
larly with respect to the number of queries and state changes. This figure shows
that CHC++ fulfills the claim that it significantly reduces both queries and state
changes, and that this also translates into a significant performance advantage over
the other algorithms.

Figure 4.12, left, shows the dependence of the frame time (averaged over sev-
eral hundred frames) on the size of the batches for previously invisible nodes. We
took measurements for batch sizes 10, 30, 50, 100, 200, and 300. We can observe
that the method performs very stable for a wide range of batch sizes. However
note that on older hardware large batch sizes of 100 and higher might cause a
more prominent delay, because of longer wait time until a query returns.
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Figure 4.12: Dependence of the average frame time on the query batch size in a
walkthrough in the Powerplant scene.
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Figure 4.13: Sequence from the Powerplant showing swift turns of the view point.
The old classification of previously view frustum culled nodes (OLD VFC) suffers
from frame rate drops which do not happen for the new classification (NEW VFC).

The effect of our new treatment of frustum-culled nodes can be seen in Fig-
ure 4.13. The figure shows swift turns in the Powerplant scene where the Pow-
erplant quickly enters / leaves the view frustum. For the previous classification
(OLD VFC) we can observe frame rate drops resulting from lost coherence, as
compared to the new method (NEW VFC) that does not show this behavior.

4.5 Conclusions

We proposed several modifications to the CHC algorithm [BWPP04]. These mod-
ifications provide a significant reduction of state changes, number of queries,
rendered triangles, and a further reduction of pipeline stalls. These benefits are
achieved by batching of occlusion queries, multiqueries which cover more nodes
with a single query, a randomly jittered temporal sampling pattern for queries, and
tight bounding volumes.
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The results show that compared to previous methods, the new method provides
up to two orders of magnitude reduction in the number of state changes and up to
one order of magnitude reduction in the number of queries. These savings trans-
late into a twofold speedup compared to CHC and about 1.5x speedup compared
to NOHC [GBK06]. The proposed method is for most cases within a few percent
of the “ideal” method which would know visibility classification in advance and
render visible geometry only without using any occlusion queries. We believe that
the new algorithm will become useful for game programmers as it is stable, easy
to implement, and it integrates well with game engines.

In the future we want to study the possibility of automatic parameter adapta-
tion during the walkthrough by exploiting the dependence of the total frame time
on the number of issued queries and rendered triangles.
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Where there is much light, the

shadow is deep.

Johann Wolfgang von Goethe 5
High Quality Screen-Space Ambient

Occlusion using Temporal

Coherence

In this chapter we will further exploit temporal coherence for visibility computa-
tions. This time the topic is not qualitative visibility in the form of binary visibility
culling for rendering acceleration - instead we investigate quantitative visibility.
In particular we improve the quality and speed of an advanced shading technique
called ambient occlusion, which is a cheap but effective approximation of global
illumination, in screen space. Screen-space ambient occlusion (SSAO) methods
sample the frame buffer as a discretization of the scene geometry, which makes the
cost of the shading technique practically independent of the scene size - a very use-
ful property to achieve output-sensitive rendering in real time. We present Tem-
poral SSAO (TSSAO), a fast new SSAO algorithm which produces high-quality
ambient occlusion without either noise or blurring artifacts, even for geometry
with fine-grained high-frequency structures. Our algorithm exploits temporal co-
herence to cache and reuse previously computed SSAO samples, and adaptively
applies more samples and spatial filtering only in regions that do not yet have
enough information available from previous frames. The method works well for
both static and dynamic scenes. Combined with our CHC++ algorithm, we are
able to render large dynamic scenes with plausible indirect illumination in real
time.
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Figure 5.1: From left to right: SSAO without temporal coherence (23 FPS) with
32 samples per pixel, with (a) a weak blur, (b) a strong blur. (c) TSSAO (45
FPS), using 8–32 samples per pixel (initially 32, 8 in a converged state). (d) Ref-
erence solution using 480 samples per frame (2.5 FPS). All images at 1024x768
resolution. The scene has 7M vertices and runs at 62 FPS without SSAO shading.

5.1 Introduction

Ambient occlusion (as defined in Section 2.5.3) is heavily used in produc-
tion rendering and recently also in real-time rendering and many high-profile
games [Mit07, FM08], because it is a local effect (due to the limited sampling
radius) that is very cheap compared to full global illumination, but still greatly
enhances the perceived realism of the scene. Figure 5.2 demonstrates the visual
impact of ambient occlusion. SSAO techniques decouple the shading from the
scene complexity by using the frame buffer as a discrete approximation of the
scene geometry. The performance of SSAO depends mainly on the number of
samples per frame, hence a relatively small number of samples is typically used
to reach the desired performance, and the resulting noise is blurred with a spatial
depth-aware filter. However, a small number of samples can be insufficient for
shading complex geometry with fine details, especially if a large sampling radius
is used. The final image will look either noisy or blurry, depending on the size of
the filter kernel. Generally a careful tuning of the filter parameters is required in
order to provide stable results, otherwise artifacts may appear, e.g., halos around
small depth discontinuities.

In this paper, we present an algorithm that achieves high-quality ambient
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Figure 5.2: This figure compares rendering without (left) and with (right) ambient
occlusion, and shows that AO allows much better depth perception and feature
recognition, without requiring any additional lighting.

occlusion which is neither blurry nor prone to noise artifacts, with a minimum
amount of samples per frame. We reuse the available AO information from previ-
ous frames by exploiting temporal coherence between consecutive image frames.
We identify pixels describing identical world positions by means of temporal re-
projection. The current state of the solution is cached in a so-called ambient oc-

clusion buffer. Each frame we compute a few new AO samples, then blend these
with the accumulated samples from the previous frames. The ambient occlusion
solution is then combined with the image resulting from direct diffuse illumina-
tion in a separate step. See Figure 5.1 for a comparison of SSAO with and without
employing temporal coherence.

Reprojection techniques have been used for a number of different tasks in the
last couple of years, like antialiasing or shadow mapping. SSAO is an especially
interesting case because it takes a pixel neighborhood into account, which leads
to unique challenges, especially for dynamic scenes. First, since SSAO is a post-
processing operation, information about reprojection needs to be stored during the
main rendering pass. Second, the validity of reprojected pixels does not depend
only on the pixel itself, but also on its neighborhood, requiring a new validity test
for reprojected pixels. Third, the convergence of the solution allows us to reduce
or completely omit spatial filtering that is typically necessary in SSAO methods,
and allows us to rely on a minimal number of new samples per frame. For pix-
els that have not converged, e.g., when cached samples have been invalidated,
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we can use information about convergence in order to reconstruct the value from
nearby samples using an adaptive convergence-aware filter that gives more weight
to already converged samples.

5.2 Our algorithm

Ambient occlusion [CT81] evaluates the reverse surface exposure, and is com-
puted by integrating the visibility function over all directions Ω on the hemi-
sphere:

AO(p) =
1
π

Z
Ω

V (p,ω′)(n ·ω′)dω
′, (5.1)

for a surface point p with normal n and a (inverse) binary visibility function
V .

V (p,ω′) =

0 if direction ω′ is blocked

1, otherwise.
(5.2)

In practice we consider occluders within a certain sampling radius only, or we
use a non-binary visibility function that provides a smooth falloff for increasing
distance to the surface point.

5.2.1 SSAO generation

SSAO methods aim to approximate the original AO integral in screen space. Sev-
eral versions of SSAO with different assumptions and trade-offs have been de-
scribed [BSD08, Mit07, RGS09]. While we demonstrated our technique only with
two different ambient occlusion methods it works with many more, and could be
used for several other shading method that depend on a screen-space sampling
kernel. We assume that such a shading method can be written as an average over
contributions C which depend on a series of samples si:

AOn(p) =
1
n

n

∑
i=1

C(p,si) (5.3)
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A typical example contribution function for SSAO would be

C(p,si) = V (p,si)cos(si− p,np)

where V (p,si) is a binary visibility function that gives 0 if si is visible from
p and 1 otherwise. Visibility is for example determined by checking whether
si is visible in the z-buffer, and sometimes attenuated with the distance from p.
We assume that the samples si have been precomputed and stored in a texture,
for example a set of 3D points uniformly distributed in the hemisphere, which
are transformed into the tangent space of p for the evaluation of C. For faster
convergence we use a Halton sequence for sample generation, which is known for
its low discrepancy [WH00].

5.2.2 Reprojection

Reprojection techniques use two render targets in ping-pong fashion, one for
the current frame and one representing the cached information from the pre-
vious frames (denoted as real-time reprojection cache [NSL∗07] or history

buffer [SJW07]). In our context we cache ambient occlusion values and there-
fore denote this buffer as ambient occlusion buffer.

For static geometry, reprojection is constant for the whole frame, and can be
carried out in the pixel shader or in a separate shading pass (in the case of de-
ferred shading) using the following formula, where t denotes the post-perspective
position of a pixel [SJW07]:

toldx′,y′,z′
= PoldVoldV−1

newP−1
newtnewx,y,z (5.4)

In our deferred shading pipeline, we store eye linear depth values for the new
and the old frame, and use them to reconstruct the world space positions p. Note
that pold can be obtained from the above formula by applying the inverse view-
projection matrix to t. For dynamic scenes, this simple formula does not work
because reprojection depends on the transformations of moving objects. Nehab
et al. [NSL∗07] therefore propose to do the reprojection in the vertex shader by
applying the complete vertex transformation twice, once using the current trans-
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Figure 5.3: The frame-to-frame optical flow using color coding for a rotating
Happy Buddha. The fixpoint of the rotation is visible as a dark spot.

formation parameters (modeling matrix, skinning etc.) and once using the param-
eters of the previous frame.

However, in a deferred shading pipeline, pold needs to be accessed in a sepa-
rate shading pass, where information about transformation parameters is already
lost. Therefore, we store the 3D optical flow pold − pnew in the frame buffer as
another shading parameter (alongside normal, material etc.), using a lower preci-
sion than for the absolute depth values (16 bit vs. 32 bit). See Figure 5.3 for a
depiction of optical flow induced by a rotating Happy Buddha model.

During reprojection, we have to check for pixels that became invalid (e.g. due
to a disocclusion). This will be described in Section 5.2.4, where we also show
that SSAO imposes some additional constraints for a pixel to stay valid.

5.2.3 Temporal refinement

The main idea of our algorithm is to spread the computation of ambient occlusion
(Equation 5.3) over several frames by using reprojection. Whenever possible we
take the solution from the old frame that corresponds to an image pixel and refine
it with the contribution of new samples computed in the current frame. In frame
t +1, we calculate a new contribution Ct+1 from k new samples:

Ct+1(p) =
1
k

nt(p)+k

∑
i=nt(p)+1

C(p,si) (5.5)

and combine them with the previously computed solution from frame t:
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Figure 5.4: The weight (1/nt) of a new sample (top) and of an old AO solution
(bottom) after given number of samples using thresholds nmax = 500,1000,1500.

AOt+1(p) =
min(nt(p),nmax)AOt(pold)+ kCt+1(p)

nt(p)+ k
(5.6)

nt+1(p) = nt(p)+ k, (5.7)

where nt keeps track of the number of samples that are have been accumulated
yet in the solution. nt is stored in a separate channel in the ambient occlusion
buffer. We also store the starting index into the set of precomputed samples, which
is used to take the new sampling positions for the current frame from a precom-
puted low-discrepancy Halton sequence. If the cached AO value is invalid, then
nt is simply set to 0. Otherwise, the solution will reach a stable state after a few
frames.

Theoretically, this approach can use arbitrarily many samples. In practice,
however, this is not advisable: since reprojection is not exact and requires
bilinear filtering for reconstruction, each reprojection step introduces a slight
blur [YNS∗09]. Furthermore, the influence of the new samples becomes close
to zero, and old samples never get replaced. Therefore we clamp nt to a user-
defined threshold nmax, which causes the influence of older contributions to de-
cay over time. Thus, conv(p) = min(nt(p),nmax)/nmax is an indicator of the
state of convergence. Note that, for nmax → ∞ Equation 5.7 would converge
to the correct solution - unlike the exponential smoothing used in previous ap-
proaches [SJW07, NSL∗07], which acts as a temporal filter kernel.

In our experience, a threshold nmax in the range [500..1500] provides a suf-
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ficiently fast update frequency to avoid major blurring artifacts while avoiding
undersampling artifacts like temporal flickering. Figure 5.4 (left) depicts how the
influence of a new sample changes from the moment it is introduced, and (right)
the exponential decay of the influence of the old AO solution after the threshold
nmax was reached.

5.2.4 Detecting and dealing with invalid pixels

When reprojecting a fragment, we need to check whether the cached AO value is
valid. If it is not, nt is reset to 0 and a new AO solution is computed. We need to
check two conditions: disocclusions and changes in the sample neighborhood.

5.2.4.1 Detecting disocclusions

Previous approaches [SJW07, NSL∗07] check for disocclusions by comparing the
depth of the reprojected fragment position dnew to the depth of the cached value
dold:

|dnew−dold|< ε

However, we found that neither screen-space depth values nor eye-linear depth
values gave reliable results. Screen-space depth values are only accurate in a
small region around the near plane, while eye-linear depth comparisons are overly
sensitive in regions near the far plane and not sensitive enough near the near plane.
The solution is to store eye-linear depth values, but to consider relative depth
differences instead of absolute ones, by checking for

|1− dnew

dold
|< ε, (5.8)

which gives good results even for large scenes with a wide depth range. Note
that pixels which were outside the frame buffer in the previous frame are also
marked as invalid.

154



5.2. Our algorithm

Figure 5.5: If we do not check for disocclusions due to dynamic objects in the area
surrounding the current pixel, we get strong artifacts (left). A full invalidation
removes the artifacts, but the shadow regions cannot profit much from temporal
coherence (middle). Assigning a small weight to the invalidated pixels allows for
a smooth invalidation and solves both problems (right).

5.2.4.2 Detecting Changes in the Neighborhood

Testing for disocclusion is a sufficient condition for validity in a purely static
scene, or for pure antialiasing. However, for shading kernels that access neigh-
boring pixels in dynamic scenes, like SSAO, we have to take into account that
the shading of the current pixel can be affected by nearby moving objects, even
if there is no disocclusion. Consider for example a scene where a box is lifted
from the floor. The SSAO values of pixels in the contact shadow area surrounding
the box change even if there is no disocclusion of the pixel itself. The artifacts
that result from ignoring this problem can be seen in Figure 5.5, left. The ren-
dering quality can be further improved by using smooth invalidation (defined in
Section 5.2.6), as can be seen in the rightmost image of Figure 5.5.

The size of the neighborhood to check is equivalent to the size of the sampling
kernel used for SSAO. Checking the complete neighborhood of a pixel would be
prohibitively expensive, therefore we use sampling. Actually, it turns out that we
already have a set of samples, namely the ones used for AO generation. That
means that we effectively use our AO sampling kernel for two purposes: for com-
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Figure 5.6: The distance of p to sample point s2 in the current frame differs sig-
nificantly from the distance of pold to s2old in the old frame, hence we assume that
a local change of geometry occurred, which affects the shading of P.

puting the current contribution Ct(p), and to test for validity. A pixel p is consid-
ered to be valid for a sample si if the relative positions of sample and pixel have
not changed by more than ε (see Figure 5.6):

||si− p|− |siold − pold||< ε, (5.9)

where the reprojected position siold is computed from the offset vector stored
for si (recall that the first rendering pass stores the offset vectors for all pixels
in the frame buffer for later access by the SSAO shading pass). Note that we
therefore use only those samples for the neighborhood test that lie in front of the
tangent plane of p, since only those samples actually modify the shadow term. If
this test fails for one of the samples evaluated for pixel p, then p is marked invalid
and nt is set to 0.

Note that, in order to avoid one costly texture look up when fetching pold , the
required values for this test and for the ambient occlusion computation should be
stored in a single render target.

In the case of dynamic objects, a large portion of the pixel information from
the previous frame is typically reusable. See Figure 5.7 for a visualization of
recently invalidated regions. E.g., for rotational movements, disocclusions occur
on the silhouette, or at pixels that were hidden by creases or folds on the surface
in previous frames. The amount of disocclusion depends on the speed of rotation,
and is usually reasonably low for up to some degrees per frame. Theoretically we
could also check if the angle between surface normal and vector to sample has
changed by a significant amount from one frame to the next to detect more cases.
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Figure 5.7: This figure shows pixels recently invalidated by our algorithm. The
left image depicts a rotation, the middle image a translation, and the right image
an animated (walking) character. Red pixels were invalidated more recently than
black ones while white pixels are sufficiently converged.

However, that would require more information to be stored (surface normal of old
pixel), and in all our tests we found it sufficient to test for condition 5.9.

5.2.5 Dealing with undersampled regions

Our algorithm ensures high-quality AO for sufficiently converged pixels. How-
ever, in screen regions that have been invalidated recently, the undersampling may
result in temporal flickering. Disoccluded regions are often coherent and lead to
distracting correlated noise patterns over several frames. We solve this by a new
convergence-aware spatial filter and by adaptive sampling.

5.2.5.1 Adaptive Convergence-Aware Spatial Filter

SSAO methods usually apply a spatial filtering pass after shading computations
in order to prevent noise artifacts caused by insufficient sampling rates. We also
apply spatial filtering, but only as long as the temporal coherence is not sufficient.
Frequently used choices of filters are variants of the cross bilateral filter [ED04,
BSD08], where filtering over edges is avoided by taking the depth differences into
account. Although this filter is not formally separable, in a real-time setting it is
usually applied separately in x and y directions to make evaluation feasible. We
follow this approach, too.

In contrast to previous approaches, we have additional information for the
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filter which can greatly reduce noise: the convergence conv(p) of our AO values.
Recently disoccluded pixels (e.g., in a thin silhouette region) can gather more
information from nearby converged pixels instead of from other unreliable pixels.
Furthermore, we apply the filter kernel directly to world-space distances, which
automatically takes depth differences into account:

AO f ilt(p) =
1

k(x, p) ∑
x∈F

g(|p− x|)conv(x)AO(x), (5.10)

where x are the individual filter samples in the screen-space support F of the
filter (e.g., a 9x9 pixel region), k(x, p) is the normalization ∑x∈F g(|p−x|)conv(x),
and g is a spatial filter kernel (e.g., a Gaussian). As a pixel gets more converged,
we shrink the screen-space filter support smoothly using the shrinking factor s:

s(p) =
max(cadaptive− conv(p),0)

cadaptive
, (5.11)

so that when convergence has reached cadaptive, we turn off spatial filtering
completely. We found the setting of cadaptive to be perceptually uncritical, e.g.,
0.2 leads to unnoticeable transitions.

5.2.5.2 Adaptive Sampling

While spatial filtering can reduce noise, it is even better to provide more input
samples. We adapt the number k of new AO samples per frame depending on
convergence (note that these samples are completely unrelated to the screen-space
samples used for spatial filtering in the previous section, where the kernel size is
adapted instead of changing the number of samples). Since disoccluded regions
are often spatially coherent (as can be seen in Figure 5.7), the required dynamic
branching operations in the shader are efficient on today’s graphics hardware.

Note that it is necessary to generate at least a minimum amount of samples
for the same reasons that we clamp nt(p) in Equation 5.6, i.e., to avoid blur-
ring artifacts introduced by bilinear filtering. Furthermore, a certain number of
samples is required for detecting invalid pixels due to changing neighborhoods
(Section 5.2.4.2). In order to keep branching to a minimum, we chose a simple
two-stage scheme, with k1 samples if conv(p) < cspatial and k2 samples otherwise
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parameter name value
Initial samples k1 32
Converged samples k2 8–16
Threshold cadaptive 0.2
Threshold cspatial 0.3
Threshold crot 0.5
nmax 500–1500
Filter width F 9x9

Table 5.1: Recommended parameters for our method.

(refer to Table 5.1 for a list of parameters actually used in our implementation).

5.2.6 Optimizations

In this section we describe some optimizations that allow for faster frame rates or
better image quality. As in most AO approaches, we rotate the sampling pattern
by a different random vector for each input pixel. However, this leads to a surpris-
ingly large performance hit, supposedly due to texture cache thrashing [SW09].
Therefore we turn off the rotation once convergence reaches a certain threshold
crot .

For moderately fast moving objects, the ambient occlusion is perceptually
valid for more than one frame. If only the neighborhood changes (i.e., the second
condition for invalidation from Section 5.2.4), a full invalidation of the current
pixel is a waste of useful information, and flickering artifacts may occur. Instead
of fully discarding the current solution by resetting nt to 0, we rather clamp nt

to a low value (between 32 and 64). Note that in practice, we do not clamp but
reduce nmax for a single frame. Using this small optimization, the AO will appear
smoother over time. Hence we denote it as smooth invalidation. The resulting
slight motion blur effect is much less distracting than temporal flickering. We
found a value in the range of nmax between 32 and 64 to be a good tradeoff be-
tween the two extrema (see Figure 5.5, right). A weak invalidation is especially
helpful for animated sequences where the transitions stay smooth.

A problem inherent in SSAO is the handling of samples that extend beyond
the frame buffer borders. As there is no best method, we settle for reusing the
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Figure 5.8: Used test scenes: Sibenik cathedral (7,013,932 vertices) and Vienna
(21,934,980 vertices).

values that appeared on the border by using clamp-to-edge. To avoid artifacts on
the edges of the screen due to the missing depth information, we can optionally
compute a slightly larger image than we finally display on the screen – it is suffi-
cient to extend about 5–10% on each side of the screen depending on the size of
the SSAO kernel and the near plane. Note that this is a general problem of SSAO
and not a restriction caused by our algorithm. Because these border samples carry
incorrect information that should not be propagated, we detect those samples that
were outside the frame buffer in the previous frame using our invalidation scheme
(see Section 5.2.4).

5.3 Results

We implemented the proposed method in OpenGL using the Cg shading language,
and tested it on two scenes of different characteristics (shown in Figure 5.8), the
Sibenik cathedral and the Vienna city model. Both scenes were populated with
several dynamic objects. For all our tests we used an Intel Core 2 processor at
2.66 GHz (using 1 core) and an NVIDIA GeForce 280 GTX graphics board. The
resolution of our render targets is either 1024x768 or 800x600, and we used 32 bit
precision for all our render targets. We also implemented a version that computes
SSAO on a half resolution render target and upsamples the solution for the final
image using our spatial filter.
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Scene Sibenik (7,013,932 vertices)
resolution SSAO TSSAO Deferred
1024 x 768 23 FPS 36 FPS 62 FPS
800 x 600 35 FPS 60 FPS 90 FPS
800 x 600 halfres 64 FPS 74 FPS
Scene Vienna (21,934,980 vertices)
resolution SSAO TSSAO Deferred
1024 x 768 21 FPS 25 FPS 65 FPS
800 x 600 29 FPS 34 FPS 67 FPS
800 x 600 halfres 47 FPS 49 FPS

Table 5.2: Average timings for the two used walkthrough sequences. We compare
standard SSAO, our method (TSSAO), and deferred shading without SSAO as
a baseline. For SSAO we used 32 samples in all scenes. For TSSAO we used
8–32 samples for TSSAO in the Vienna scene and 16–32 samples in the Sibenik
cathedral.

To prove that our method is mostly independent of the SSAO generation method,
we implemented both the method of Ritschel et al.[RGS09], and the algorithm
introduced by Fox and Compton [FC08]. The latter algorithm uses screen-space
sampling like Shanmugam and Arikan [SA07], and is more of an artistic approach
and less physically based. In our opinion it preserves more small details when
using large kernels for capturing low-frequency AO. In order to ensure that the
sampling kernel will always cover the same size in world space, we implemented
the following extension to the method: we multiply the initial kernel radius with
the w coordinate from the perspective projection of the current pixel, i.e., the per-
spective foreshortening factor. As a result we obtain AO values that are invariant
to zooming.

Our method has a couple of parameters used to control temporal refinement,
which we list in Table 5.1 together with some recommended values.

In the two walkthrough sequences for Vienna and Sibenik, we aimed to con-
sider all the major cases of motion that occur in real-world applications. We in-
cluded rigid dynamic objects as well as animated characters with deforming parts.

Table 5.2 shows average timings of our walkthroughs, comparing our method
(TSSAO) with SSAO without temporal coherence and the performance-baseline
method: deferred shading without SSAO. TSSAO used 8 respectively 16 samples
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Figure 5.9: Frame times of the Vienna walkthrough (with occlusion culling, left)
and the Sibenik walkthrough (right) at resolution 1024x768.

when converged and 32 otherwise for Vienna and for Sibenik, whereas SSAO
always uses 32 samples. The cost of the SSAO/TSSAO algorithms (difference
in frame times to baseline) is relatively independent of the scene complexity, and
scales with the number of pixels in the frame buffer. TSSAO is always faster than
SSAO when using the same number of samples, for full and for half resolution
ambient occlusion buffers. TSSAO does not apply spatial filtering or rotate the
sampling filter kernel after convergence has been reached.

Figure 5.9 shows the frame time variations for both walkthroughs. Note that
occlusion culling is enabled for the large-scale Vienna model, and thus the frame
rate for the baseline deferred shading is quite high for such a complex model.
The framerate variations for TSSAO stem from the fact that the method generates
adaptively more samples for recently disoccluded regions, which can be quite
big if we have dynamic objects that are large in screen space. For close-ups of
dynamic objects, the frame times of TSSAO are almost as long as the frame times
of SSAO. For more static parts of the scenes, TSSAO is significantly faster.

Figure 5.10 depicts the influence of the adaptive convergence-aware filter on
the quality of the TSSAO solution.

The quality of TSSAO is significantly better. It corresponds to at least a 32
sample SSAO solution (since 32 samples are used for disocclusions), while the
converged state takes up to several hundred (nmax) samples into account. Note
that a similar quality SSAO solution would be prohibitively slow. As can be seen
in Figure 5.1 (using the method of Fox and Compton) and Figure 5.11 (using
either the method of Fox and Compton or the method of Ritschel et al.), TSSAO

162



5.4. Conclusion

Figure 5.10: Rotational movement using TSSAO. (left) Without filter. (right)
Using our filter. Note how the filter is only applied in the noisy regions, while the
rest stays crisp (Zoom into the pdf to see the differences).

provides finer details and less noise artifacts, while at the same time being faster.
We compared TSSAO to SSAO with a weak and a strong blur filter, and to a
reference solution using 480 samples per frame – which was the highest number
of samples our shader could compute. After a short time, the TSSAO method
converges to the reference solution.

5.4 Conclusion

We presented a screen-space ambient occlusion algorithm that utilizes reprojec-
tion and temporal coherence to produce high-quality ambient occlusion for dy-
namic scenes. Our algorithm reuses available sample information from previous
frames if available, while adaptively generating more samples and applying spa-
tial filtering only in the regions where not enough samples have been accumulated
yet. We have shown an efficient new pixel validity test for shading algorithms,
which accesses a pixel neighborhood in a way that it can also benefit from tem-
poral reprojection. While we restricted our results to show ambient occlusion,
our algorithm can be seen as a cookbook recipe that is applicable to many other
screen-space sampling algorithms with a finite kernel size.

In the future, we want to explore other useful sampling-based techniques and
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Figure 5.11: From left to right: SSAO without temporal coherence using 32 sam-
ples, with a (a) weak, (b) strong blur. (c) TSSAO using 8 - 32 samples per frame.
(d) Reference solution using 480 samples. The results are shown for the meth-
ods of Fox and Compton (left column) and Ritschel et al. (right column). All at
1024x768 resolution.
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how they can be enhanced with temporal coherence, and aim to derive general
rules regarding invalidation that are applicable to different classes of problems.
Also we plan to further investigate the problems with the blurriness that occurs
because of bilinear filtering in combination with fast zooms. As these artifacts
mainly occur on surfaces that are nearly perpendicular to the view direction,
we want to investigate how they are related to the projection error known from
shadow mapping.
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You’re invisible now,

you got no secrets to conceal.

Bob Dylan 6
Conclusions and Future Work

In the final chapter we first sum up the contents of the thesis. Then we give a
detailed analysis of the strengths and limitations of the proposed algorithms and
show future directions. Finally we give some conclusions.

6.1 Synopsis

In this thesis we discussed visibility computations in their various forms of occur-
rence, both qualitative and quantitative in nature, and why this task is so funda-
mental for the field of realistic 3D computer graphics. The main part of our re-
search was focussed on the task of qualitative visibility, i.e., visibility culling for
rendering acceleration, both as a preprocess and online. As countless algorithms
have been already published in the field of visibility preprocessing, we pointed
out the comparable importance of the task of preparing the scene for the actual
PVS computation by creating meaningful view cells and objects. Another part of
this thesis dealt with online occlusion culling methods for fully dynamic scenes,
and how to reduce the overhead of hardware occlusion queries to make them com-
patible to preprocessed visibility in terms of ease of use and efficiency. Also, we
investigated quantitative visibility computations for realistic lighting effects and
ambient occlusion in particular, as this is nothing else than pure visibility over the
hemisphere. Temporal coherence was a recurring term in this thesis - we used
its potential to accelerate both online occlusion culling and screen-space ambient
occlusion, while significantly improving the quality of the latter technique.
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Our goal was to create general and practical algorithms for output sensitive

real-time rendering that have no restrictions with respect to the scene configura-
tion. In particular, we proposed four novel visibility algorithms which cover a
wide range of applications. We will now shortly summarize them, and describe
their main contributions.

Two algorithms deal with the creation of view space and objects space parti-
tions that are optimal for subsequent PVS-based rendering in terms of render cost
and memory cost. To our knowledge these are the first methods which analyze
what good view and object space partitions are in terms of render cost and mem-
ory cost, and then optimize these partitions for visibility culling. Both algorithms
start with an initial coarse global visibility sampling in order to capture sufficient
information about the visibility in the scene. A novel cost-benefit model is then
used to drive the partitioning process. The first method assumes the objects to be
given and provides a visibility guided view cell construction. First it subdivides
the scene into a set of elementary view cells using a BSP tree, and then optionally
merges these cells to larger ones for further refinement. We extended this method
to allow for combined optimization of view space and object space, by interleav-
ing the subdivision process. This is the first algorithm that accounts for the fact
that render cost and memory cost in a scene are highly dependent on the interac-
tion of both subdivisions. Next we presented a fast online culling algorithm that
improves the well-known Coherent Hierarchical Culling (CHC) algorithm, which
utilizes temporal coherence by waiting only for the query results of the previ-
ously invisible nodes, and interleaves querying and rendering. The new algorithm,
CHC++, keeps the general structure of the original algorithm and its simplicity,
while eliminating most of its drawbacks by introducing a couple of optimizations.
The main contribution is a significant reduction of the algorithm overhead even
for difficult view points compared to previous approaches. At last we presented
a screen-space ambient occlusion algorithm that employs temporal reprojection
to exploit coherence between consecutive frames and accumulates samples over
time. We introduced a novel invalidation scheme which allows for fully dynamic
scenes and deformable objects. Furthermore, we introduced an adaptive spatial
filter as well as an adaptive sampling strategy to generally raise the quality of any
underlying SSAO shading technique while regenerating only the minimal amount
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of samples.

6.2 Analysis of the proposed algorithms

The methods for scene preprocessing provide valuable insight into the properties
of view space and object space, their dual relationship, and how they are con-
nected in terms of render cost and memory consumption. We defined a measure
for optimality of view space and object space partitions, and showed that tradi-
tional methods for view space subdivision like auto-partition BSP are far from
optimal under these assumptions. While grid-like structures work quite well in
outdoor scenes with a lot of free space, aligning the locations of the view cell
boundaries with actual visibility events is more important in scenarios with sud-
den changes in visibility like indoor scenes. We believe that our algorithms are
well suited to be used in a frame work in combination with the efficient AGVS
visibility solver [BMW∗09], as both methods use similar strategies, i.e., random
global sampling and hierarchical subdivision. While we achieved some decent re-
sults with our techniques, we feel that there is future work to do in order to make
good estimates of render cost, and to calibrate the heuristics for a particular hard-
ware, taking material properties and LODs into account. The method for view
cell construction may have more practical relevance than the second method that
interleaves view space and object space subdivisions, because such a combined
optimization of view space and objects space is computationally much more ex-
pensive.

We believe that CHC++, our online occlusion culling algorithm, is efficient
and useful in practice. It was developed in the context of practical issues that we
faced when integrating CHC into a game engine. Hence we are quite confident
that it can be implemented into any game engine with moderate effort and without
major modifications. The main observation of the work was to realize that much
of the query overhead is caused by the state changes induced by switches between
render and query mode. Hence the most effective optimization is the batching
of occlusion queries, which significantly reduces the number of these costly state
changes compared to the previous state of the art. The algorithms limits the over-
head of the occlusion queries to a minimum, and achieves a significant speed up
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Figure 6.1: As can be seen in this snapshot, our real-time-rendering frame work
features techniques like shadow mapping and SSAO for realistic lighting (i.e.,
quantitative visibility). The core rendering algorithm uses visibility culling for
acceleration (i.e., qualitative visibility).

over algorithms like CHC or NOHC on various target hardwares.
Our temporal screen-space ambient occlusion (TSSAO) algorithm is also well

suited for use in practice. The method greatly enhances the quality of the under-
lying SSAO algorithm [FC08, RGS09] due to the fact that hundreds of samples
can be accumulated over a couple of frames. In fact, a similar technique was de-
veloped in parallel for use in the high-profile game Star Craft 2 [SW09], which
underlines the relevance of our method. Thanks to our novel invalidation scheme,
our method works can handle dynamic scenes and deformable objects very well.
As a screen-space algorithm, it is more or less independent of the scene size, and
can be used together with CHC++ to render large dynamic scenes with realistic
lighting in an output-sensitive fashion and in real-time frame rates.

6.2.1 Combining our algorithms

As each of our proposed algorithms covers a different aspect of visibility compu-
tations, it is quite straightforward to combine them and to provide a system for
output-sensitive real-time rendering with advanced shading techniques. In fact,
we have developed a rendering framework that supports both PVS-based render-
ing for the static geometry and online culling using CHC++, and they can op-
tionally be used together. The framework has a deferred rendering pipeline that
utilizes shadow mapping for direct lighting, and our screen-space ambient oc-
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clusion algorithm for the indirect illumination. Our visibility culling algorithms
(i.e., qualitative visibility) work very well together with our real-time illumination
algorithms (i.e., quantitative visibility), because all these algorithms are output-
sensitive and more or less independent of the scene size (as long as the scene fits
into memory). A rendering using our frame work can be seen in Figure 6.1.

To integrate the PVSs into our framework we established a pipeline that first
computes the view cells for a given scene using our view cell construction algo-
rithm. Then it feeds these optimized view cells to the visibility solver (i.e., the
efficient AGVS algorithm [BMW∗09]), which computes a good solution in less
than two hours. At last it loads the solution (consisting of the view cells and the
corresponding PVSs) into our online rendering framework, where the task is just
to find the current view cell and load its PVS.

We combine PVS-based rendering with CHC++ by setting a flag which in-
dicates for each object in the scene if it is potentially visible. Then we simply
proceed with the hierarchical traversal of CHC++, and process only objects that
are potentially visible. For difficult view points combining preprocessing and
CHC++ brings some gain compared to CHC++ alone, whereas there is practi-
cally no gain for situations where online occlusion culling works best (e.g., in the
streets of a city). However, once we integrate pre-fetching into our framework for
memory-intensive scenes, we expect that PVSs will be very useful for the purpose
of prediction.

6.3 Future work

This section discusses the future outlooks on visibility research. Although many
believe that this topic has already reached a rather mature state, we identified
several issues that ought to be solved in order to make visibility culling more
feasible in practical applications. Afterwards, we give an outlook on other topics
that have been discussed in this thesis, in particular real-time global illumination
and reprojection techniques.
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6.3.1 Striving for simplicity

A very important criterion for the success of a technique is its simplicity and ease

of use. Occam’s razor states that the simplest solutions are often the best, and his-
torically it has been shown that the simplest algorithms are those that survive in
time, whereas more sophisticated algorithms rarely come to any practical use (e.g.,
the z-buffer [Cat75] versus the a-buffer [Car84]). While some efficient visibility
algorithms have been proposed, they are often still hard to implement and difficult
to debug, which to some extend limits their widespread use. A first step into the
right direction was made in recent years when favoring conceptionally simpler
sampling-based visibility algorithms over geometric algorithms that often insta-
ble and require special handling for occluder fusion. Also, visibility algorithms
should get rid of special structures like hierarchies, stacks, or caches wherever
possible. This will improve their chances to scale better with very complex scenes
and new hardware developments like massively parallel hardware algorithms.

6.3.2 A combined algorithm using PVSs and hardware occlu-
sion queries

Just using PVS-based rendering together with CHC++ without any modifications
brings only a minimal speedup in most situations, and there seems to be quite
limited potential to improve on previous online culling algorithms with means of
temporal coherence only. However, it may be possible to combine online culling
and visibility preprocessing in a more radical way in a single algorithm, which
retains the strength of both paradigms while getting rid of the weaknesses. Com-
bining a method similar to CHC++ with a view cell structure and a coarse form
of PVSs (i.e., making use of spatial coherence) could be the way to go, yielding
some speedup over CHC++, while avoiding the rare situations that the overhead
of CHC++ may still dominate the gain, like in extreme bird eye views of city
scenes. Such an algorithm could also be made simpler than current preprocessing
and online occlusion culling methods, hence fulfilling the requirements of the last
paragraph.
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6.3.3 Reverse visibility for interactive scene editing

An interesting topic yet not fully explored by the research community is the rever-

sal of the visibility problem, i.e., to design the visibility in a scene in order to fit
the needs of a user. This task has an important application in game design, where
the designers want to avoid annoying frame rate drops [ED07] due to portions of
the scene that are unintentionally visible through leaks. The problem was partly
handled by recent visibility algorithms [ED07, BMW∗09]. The latter method is
able to interactively visualize so-called visibility hotspots (i.e., regions where the
PVSs are too large) in the scene, and locally recalculate visibility in the regions of
changes. However, the focus of this work was PVS computation, and the ability
for interactive visibility-aware scene manipulation is still in a rather rudimentary
state. Much more work and research must still be put into a complete system that
will be useful in the work flow of a game company. Ideally, there could be a plug-
in for a major rendering package that allows for visibility-aware scene editing.

6.3.4 Optimal hierarchy construction for online culling

Online culling algorithms have already reached a very advanced state, and we feel
that more potential lies in optimizing the underlying hierarchy than in optimizing
the actual algorithm. Up to now there is only a very small number of papers
available on this topic, most notably the survey of Meißner et al. [MBM∗01].
However, they did not take hardware-dependent parameters into account for their
heuristics. The properties of the hierarchy, like the proper termination depth, can
significantly influence the performance of an occlusion culling algorithm. The
optimal parameters depend on the occlusion properties in the scene, the cost of a
query, the cost of rendering and shading the geometry. An important question is
how to best handle materials.

6.3.5 Robust and efficient exact visibility

While exact visibility has already been claimed to be solved, we are not aware of
any solution that can handle general 3D scenes with millions of triangles. Also,
these algorithms are prone to numerical instabilities. It is still not known if an
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efficient exact solution that scales well with scene size, has little or no numerical
problems, and reasonable memory requirements, is even possible. Without doubt
such an algorithm would solve a number of issues in the field of visibility. For
example, statistics over the PVS size lose some significance if there is no com-
parison to a ground truth solution, because the exact PVS size is not known or
unreliable. Therefore we believe that it may be worthwhile to examine exact al-
gorithms further. Hopefully new parallel programming interfaces like CUDA or
new architectures like NVidia Tesla and ATI FireStream open up new possibilities
in this direction.

6.3.6 Real-time global illumination

Recent developments make it a viable option in the future to routinely use dynamic
real-time global illumination in standard applications and consumer games. It is
already possible to evaluate hundreds of visibility queries per frame in almost real
time using imperfect shadow maps [RGS09]. Hence it seems that the techniques
are already there, and it is just a question of more powerful hardware to reach this
goal. On a closer look however, it becomes apparent that current real-time solu-
tions are merely a crude approximation of full-fledged global illumination, and
that there is still a sufficient amount of tough problems for researchers to solve in
this field. A trend is visible in recent years that goes into the direction of investi-
gating algorithms and effects that exist since a long time in offline rendering, and
mapping them to real-time algorithms on modern hardware architectures, using
APIs like CUDA.

6.3.7 Reprojection and temporal coherence

Of course there are limits to the extent to which we can exploit temporal coher-
ence to reuse results from previous frames - but we have yet to find out where
these limits lie. It seems that the properties of reprojection techniques are not
fully understood yet, and a more detailed analysis can bring more insights, and
hopefully allows a more robust and better use of this powerful class of methods.
In particular, one has to investigate the influence of the projection error due to
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steep surfaces on the approximation error, resulting in blur artifacts. The same is
true for the influence of all kinds of motions of both viewer and objects.

6.4 Conclusions

This thesis presented many aspects of visibility computations for real-time render-
ing. We showed that virtually all areas of 3D computer graphics require solving
complex visibility interactions efficiently and in an intelligent fashion, and we
proposed solutions for several important visibility problems. New applications
require processing huge amounts of data interactively and pose challenges to both
current and future visibility research. It is important to see that ray tracing is not
the holy grail when it comes to visualizing large data sets. Using hierarchical visi-
bility culling together with a simplification strategy like LODs for distant objects,
rasterization-based rendering scales equally well, and is able to render large scenes
with hundreds of millions of triangles at real-time frame rates. The first part of
this thesis was dedicated to the problem of visibility culling for output-sensitive
rendering. We showed that both big paradigms of visibility culling, preprocess-
ing and online occlusion culling, have important applications and interesting re-
search problems, and presented contributions in both areas that take general 3D
scenes as input. The second part of the thesis investigated visibility computations
for the purpose of realistic lighting. The proposed ambient occlusion algorithm
showed that by utilizing temporal coherence, accurate high-quality shading with
effectively hundreds of queries per pixel is possible at real-time frame rates. As
a screen-space method, the presented algorithm is naturally output sensitive and
more or less independent of scene size. Hence all our methods thrive for output
sensitivity and can be combined for maximal efficiency, using preprocessing for
the static parts of the scene, online culling for the dynamic parts, and ambient oc-
clusion for realistic lighting. On the one hand, this thesis provided some practical
solutions for typical visibility problems that accelerate rendering and improve the
rendering quality. On the other hand, it contributed some theoretical aspects and
brings deeper understanding of the properties of visibility culling, and will hope-
fully inspire researchers to continue visibility research into new fruitful directions
in the future.
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