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Figure 1: From a noisy input point set of 87K points (a) we hierarchically build a reduced Gaussian mixture representing its density (b).
On this mixture, a Continuous Projection operator is applied, which efficiently produces an L1 reconstruction of 72K point positions (c) at
∼ 9 FPS. In contrast, an L2 reconstruction (d) with small feature-preserving kernel exhibits heavily visible noise (top), while a larger kernel
biases and oversmoothes the result (bottom). Our method runs at up to 7 times the speed of a fast GPU implementation of standard WLOP
while providing comparable or even better quality, allowing for interactive robust reconstruction of unordered dynamic point sets.

Abstract

With better and faster acquisition devices comes a demand for fast
robust reconstruction algorithms, but no L1-based technique has
been fast enough for online use so far. In this paper, we present a
novel continuous formulation of the weighted locally optimal pro-
jection (WLOP) operator based on a Gaussian mixture describing
the input point density. Our method is up to 7 times faster than
an optimized GPU implementation of WLOP, and achieves inter-
active frame rates for moderately sized point clouds. We give a
comprehensive quality analysis showing that our continuous oper-
ator achieves a generally higher reconstruction quality than its dis-
crete counterpart. Additionally, we show how to apply our continu-
ous formulation to spherical mixtures of normal directions, to also
achieve a fast robust normal reconstruction.
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1 Introduction

In recent years, many robust surface reconstruction techniques have
been developed that can deal with a variety of acquisition errors
like noise, outliers, missing data (holes) or registration artifacts.
They are commonly based on a robust L1-optimization approach
and are able to produce high-quality output despite very difficult
data. However, current L1 techniques are typically too expensive
to achieve interactive reconstruction times for at least moderately
sized point sets, even for parallel implementations. Hence, due to
their nature, they are designed for quality rather than performance.
The availability of modern online acquisition devices has however
created new research challenges in performing instant surface re-
construction of such dynamic point data. A variety of methods have
recently been proposed for online L2 reconstruction of static [Izadi
et al. 2011] as well as dynamic scenes [Zhou et al. 2008]. How-
ever, a major challenge for a dynamic point-based reconstruction
technique is its robust performance in the face of corrupt and noise-
contaminated data, as is commonly given in real-world scanning
scenarios due to sensor accuracy, occlusions, imperfect registration
and other issues.

In this paper, we introduce a highly efficient variant of the locally
optimal projection (LOP) operator [Lipman et al. 2007]. LOP ro-
bustly fits a set of resampling particles to a noisy point cloud by it-
eratively applying a system of attractive forces defined by the input
points. Characteristically, LOP requires high computational effort
for the iterative evaluation of all mutual forces between the parti-
cles and the discrete set of points. Our approach reformulates this
operator to be applicable to a much more compact, continuous rep-
resentation of the point cloud’s attractive potential field. We use a
Gaussian mixture model (GMM) to describe the point cloud’s den-
sity in a geometry-preserving manner and show how to compute an
efficient analytic solution to the integral forces exerted on the parti-
cles by each of its continuous components. By operating on a small
set of Gaussians instead of the large input point cloud, Continuous
LOP (CLOP) achieves speedups of up to a factor of 7 over a compa-
rable LOP implementation on the GPU. This makes a robust recon-
struction at interactive frame rates for moderately sized dynamic
point sets possible (see Figure 1). We also demonstrate that the
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same continuous formulation can be directly applied to the spher-
ical domain to efficiently compute locally robust point normals as
well. Furthermore, our continuous representation allows for robust
point-cloud upsampling. Our results show that despite its much
faster computation, our continuous algorithm achieves better point
regularity and equal or even higher reconstruction accuracy than its
discrete counterpart and even high-quality variants like Weighted
LOP [Huang et al. 2009].

2 Related Work

Surface Reconstruction from point clouds has been a major re-
search topic for 20 years. Implicit surface reconstruction methods
range from locally fitting tangent planes [Hoppe et al. 1992], using
Radial Basis Functions [Carr et al. 2001], or Poisson Reconstruc-
tion [Kazhdan et al. 2006; Kazhdan and Hoppe 2013]. Point set
surfaces based on a moving least squares formulation (MLS) have
been successfully used to resample and smooth point clouds [Alexa
et al. 2003; Amenta and Kil 2004] in the presence of noise, but they
have problems handling outliers. L1-based reconstruction tech-
niques have gained a lot of attention over the last years in many
fields, as they are known to be less sensitive to the presence of
outliers. For surface reconstruction, methods have been proposed
that use recent advances in robust statistics [Fleishman et al. 2005;
Oztireli et al. 2009]. These methods are theoretically able to faith-
fully reconstruct a surface as long as there are less than 50 percent
outliers (the breakdown point). Other methods perform a global
minimization on the orientation of the input normals, using ideas
from compressed sensing and sparse signal recovery [Avron et al.
2010]. However, while these algorithms are of high quality, due to
their global nature they are often extremely slow, do not scale well
to large data or require special assumptions on the input data (e.g.,
data with a few planar elements).

LOP and Variants. The Locally Optimal Projection (LOP) oper-
ator [Lipman et al. 2007] is particularly attractive for reconstruction
since it does not put many constraints on the nature of the input data,
i.e., it does not require a well-defined surface parametrization nor a
surface which can be locally well approximated with a plane. As the
algorithm is related to the Weiszfeld-algorithm for finding the L1-
median [Hartley et al. 2011], it is robust against outliers, but still rel-
atively cheap and highly parallelizable because of its local support.
However, the running times of the original algorithm are still infea-
sible for interactive applications. Weighted LOP (WLOP) [Huang
et al. 2009] deals with unevenly sampled point clouds by taking into
account a local density measure which relaxes the attractive forces
in denser regions and hence reaches more evenly distributed points.
We will show that this concept is compatible with our continuous
LOP formulation and can be adopted without any additional effort.
Kernel LOP (KLOP) [Liao et al. 2013] reduces the computation
cost of LOP by subsampling the point cloud using a kernel density
estimate (KDE). While this reduction achieves a decent accelera-
tion, reducing the number of discrete input samples also constrains
the number of usable resampling particles [Lipman et al. 2007],
thus the general reconstruction quality deteriorates quickly for a
small number of kernels. As our approach describes the point set’s
whole KDE continuously, we are able to reconstruct at high particle
rates using only few Gaussian components.

GPU-based Online Reconstruction. With the introduction of
real-time 3D acquisition devices, interactive reconstruction has be-
come a highly important topic. The recently developed Kinect-
Fusion algorithm [Izadi et al. 2011] builds a complete volumetric
model of the environment by integrating range data over time in
a 3D grid. The data can then be used for tracking and rendering

by raycasting the implicit surface in the grid, but it only handles a
limited amount of dynamics in the scene. For dynamic point sets,
Zhou et al. [2008] build a GPU kD-tree in each frame to perform
range queries for a per-frame computation of the k-nearest neigh-
bors. Auto Splats [Preiner et al. 2012] accelerate the normal estima-
tion process by executing the same range queries entirely in image
space, discarding the necessity for a per-frame kD-tree construc-
tion.

Gaussian Mixtures. To describe complex data distributions us-
ing a simple model, Gaussian mixture models have been used in
various scientific fields, like image segmentation [Garcia et al.
2010], object recognition [Vasconcelos 1998] and rendering [Wal-
ter et al. 2008; Jakob et al. 2011]. We employ this model to obtain a
simple but expressive representation of the point distribution in an
input point set. We use a hierarchical version [Vasconcelos 1998]
of the Expectation-Maximization (EM) algorithm [Dempster et al.
1977], which quickly computes a maximum likelihood estimate of
the mixture component parameters.

Robust Normal Estimation. Normal estimation is a fundamen-
tal problem in surface reconstruction and point rendering. Basic ap-
proaches use some form of local plane fitting [Hoppe et al. 1992],
but noisy point sets with outliers and possible sharp features re-
quire more robust normal estimations. Approaches range from in-
scribing empty balls [Dey and Sun 2006], smoothing and outlier
removal [Huang et al. 2009], global L1 norm optimization [Avron
et al. 2010] to randomized Hough transforms [Boulch and Marlet
2012]. Robust statistics-based methods have been shown to achieve
superior results in the presence of outliers [Kalogerakis et al. 2007;
Li et al. 2010; Zheng et al. 2010; Oztireli et al. 2009]. In this pa-
per, we will show that our proposed continuous LOP operator can
be directly adopted to not only perform a fast robust resampling of
a point cloud, but also an equally efficient robust reconstruction of
point normals.

3 A Review of the LOP Operator

The Locally Optimal Projection (LOP) Operator [Lipman et al.
2007] fits a number of points Q = {qi}i∈I (denoted as parti-
cles) into local medians of a point set P = {pj}j∈J , I and J
being the respective index sets. The algorithm performs a local-
ized version of Weiszfeld’s algorithm for finding the spatial median
q = argmin

x

{Σj∈J‖x− pj‖} using a steepest descent on the sum

of Euclidean distances from all points pj . To extend the Weiszfeld
algorithm to multiple particles, LOP uses an isotropic, fast decay-

ing localization kernel θ(r) = e−r2/(h/4)2 around each particle,
which concentrates its influence onto its support radius h. Starting

with an arbitrary initial particle set Q(0), LOP computes the target
particle positions Q by performing a fixed-point iteration

Q(k+1) = argmin
X={xi}i∈I

{E1(X,P,Q(k)) + E2(X,Q(k))} (1)

where
E1(X,P,Q(k)) =

∑

i∈I

∑

j∈J‖xi − pj‖θ(‖qi − pj‖),
E2(X,Q(k)) =

∑

i′∈I λi′
∑

i∈I\{i′} η(‖xi′ − qi‖)θ(‖qi′ − qi‖).

Here, E1 is an energy term attracting Q towards the local medians
of P , while E2 defines a repulsive energy between the particles that
strives for an equal distribution of the qi over the approximated sur-
face. θ denotes the localization kernel constraining both terms to a
finite influence radius, {λi}i∈I are weights balancing the particles’
attractive and repulsive forces, and η is a repulsion function deter-
mining a distance-based repulsion strength (we use η(r) = −r as



suggested by Huang et al. [2009]). Eq. (1) leads to the following

formulation for the updates of each particle q
(k)
i ∈ Q(k) in iteration

k. The first iteration acts as an L2 initializer for Q,

q
(1)
i =

∑

j∈J pjθ(‖pj − q
(0)
i ‖)

∑

j∈J θ(‖pj − q
(0)
i ‖)

, i ∈ I, (2)

followed by the fixed-point iteration updates

q
(k+1)
i = F1(q

(k)
i , P ) + µ F2(q

(k)
i , Q′

i
(k)

) (3)

F1(q, P ) =
∑

j∈J

pj
αj

∑

j′∈J αj′
(4)

F2(q,Q
′
i) =

∑

i′∈I\{i}

(q − qi′)
βi′

∑

i′′∈I\{i} βi′′
(5)

where Q′
i denotes the set of complementary particles Q\{qi}. The

repulsion parameter µ ∈ [0, 0.5) controls the balancing between
the attractive forces F1 of the points pj and the repulsive forces F2

from the neighboring particles qi. Both forces are defined as convex
sums over their respective neighbors, with pairwise weights

αj =
θ(‖pj − q‖)
‖pj − q‖ , βi′ =

θ(‖q − qi′‖)
‖q − qi′‖

∣

∣

∣

∣

∂η

∂r
(‖q − qi′‖)

∣

∣

∣

∣

. (6)

Huang et al. [2009] proposed an improved, weighted version of
LOP, referred to as WLOP, that introduces additional balancing of
these weights, allowing for a more uniform distribution of the par-
ticles in regions of varying point density. We show in Section 7
that this additional balancing can be natively integrated into our an-
alytic approach, enabling us to actually perform analytic WLOP.
However, for the rest of this paper, we will refer to our method as
Continuous LOP (CLOP) for simplicity.

4 Motivation and Overview

The formulation of Eq. (1) can be interpreted as a particle simula-
tion of a set of repulsive particles Q on an attractive background
potential field Π, which is represented by a discrete set of samples
P . The computational effort of LOP scales with the number |P | of
points and the number |Q| of resampling particles to be processed
in order to evaluate all mutual forces in the system. As typically
|Q| ≪ |P |, the majority of the time will be spent on the evaluation
of the attractive forces from all points pj , which can be seen as the
carriers of the energy potential of Π. We therefore propose to re-
duce Π to a more compact, yet still accurate representation, which
allows evaluating the attraction term much more efficiently.

In this paper, we use a mixtureM of anisotropic Gaussians to rep-
resent the density of the input points, where |M| ≪ |P | (Sec-
tion 5). We then derive an analytic solution for the continuous
attraction forces exerted by each individual Gaussian (Section 6).
The mixture is efficiently computed from the input points P by a
constrained hierarchical expectation-maximization procedure. This
one-time effort easily pays off, considering the reduced amount of
density-representing entities to process during the following LOP
iterations (typically 10–20). In Section 7, we show how to extend
our approach to WLOP without additional cost. In Section 8, we
exploit an inherent coherency in the repulsive moments of the par-
ticles to also accelerate the evaluation of the repulsion term over all
LOP iterations. Finally, we extend our continuous formulation to
the robust estimation of normals (Section 9).

5 Gaussian Mixture Density Computation

In this section, we efficiently reduce the set P of unordered
input points to a much more compact mixture of Gaussians

M = {ws,Θs} that reflects the density distribution of the points.
That is, M defines a probability density function (pdf) as a
weighted sum of |M| Gaussian components

f(x|M) =
∑

s

wsg(x|Θs), (7)

where the Θs = (µs,Σs) are the Gaussian parameters, ws their
corresponding convex weights, and g denotes the d-variate Gaus-

sian pdf with g(x|µ,Σ) = |2πΣ|− 1
2 e−

1
2
(x−µ)TΣ−1(x−µ). We de-

mand M to be efficiently computable in parallel, and to ideally
reflect the density of P while minimizing the smoothing of the sig-
nal which LOP tries to reconstruct. We use a constrained variant of
hierarchical expectation maximization [Vasconcelos 1998], which
aims at optimizingM in the maximum-likelihood sense while try-
ing not to destroy characteristic information about the underlying
geometry. Next, we will shortly review the EM and hierarchical EM
(HEM) algorithms, and then present a modified, constrained variant
of HEM to compute an accurate density estimate of the point cloud.

5.1 Expectation Maximization in GMMs

An ideal density estimateM of an input point set {pi} is defined
in a way that it maximizes the likelihood L(M) =

∏

i f(pi|M)
of producing the set P under M. Starting with an initial guess

M(0), Expectation Maximization [Dempster et al. 1977] computes
such a maximum likelihood estimate (MLE) for mixture models
by iteratively optimizing an estimator of the parameters of M
until a local maximum of the objective log-likelihood function
Llog = log L(M) is found. It thereby uses a discrete distribution
of posterior responsibility probabilities ris for a fuzzy assignment
of each point to each component, and optimizes them along with
the model parameters. This is done in an alternating two-step pro-
cedure, which eventually converges to a local maximum of Llog:

E-Step: Given the current model parametersM, compute the ex-
pected responsibilities

ris =
L(Θs|pi)ws

∑

s′ L(Θs′ |pi)ws′
, L(Θs|pi) = g(pi|Θs) (8)

M-Step: Based on the new responsibilities, update the model pa-
rameters M′. For Gaussian components, these are the points’
weighted means µs and weighted covariances Σs with convex
weights ris/

∑

i′ ri′s, and mixture coefficients ws =
∑

i ris/|P |.

5.2 Hierarchical EM

In contrast to classic EM, hierarchical EM performs only one ini-
tial EM iteration on the complete input data, and then successively
reduces the mixture by hierarchically applying EM on Gaussians
instead of points. HEM equips each input point pi with an ini-

tial low-variance Gaussian Θ
(0)
i , which results in an initial mix-

tureM(0) = {w(0)
s ,Θ

(0)
s } with initially equal component weights

w
(0)
s = 1/|P |. The component parameters Θ

(l+1)
s of the next level

are then estimated based on the current level l by an adapted EM
step. Since each Gaussian Θi represents wi = wi|P | points, HEM
alters the likelihood function L employed in the E-Step in Eq. (8)
to incorporate wi representative “virtual samples”:

L(Θ(l+1)
s |Θ(l)

i ) =
[

g(µ
(l)
i |Θ

(l+1)
s ) e−

1
2
tr([Σ

(l+1)
s ]−1Σ

(l)
i

)
]wi

(9)

Given the responsibilities ris and the mixture M (l) of the current
level, the model parameters of the next higher level are again max-



(a) (b) (c)

Figure 2: Gaussian Mixture on a signal with an outlier (top) and
its LOP reconstruction (bottom). Ellipses denote Gaussians’ one-

σ-isodistances. (a) Initial mixture. (b) Level M(1) with uncon-
strained HEM. (c)M(1) with constrained clustering radius. Stan-
dard HEM tends to smooth the signal, while regularized HEM is
more feature preserving, at the cost of less component reduction.

imized by convex sums

w(l+1)
s =

∑

i

ris wi µ(l+1)
s =

∑

i

ωisµi

Σ(l+1)
s =

∑

i

ωis

(

Σ
(l)
i + (µ

(l)
i − µ(l+1)

s )(µ
(l)
i − µ(l+1)

s )T
)

(10)

with convex weights ωis = riswi/
∑

i′ ri′swi′ . To initialize the

mixture M(l+1) of each next higher level before the hierarchical

EM-step, we randomly subsample the setM(l) (usually ∼ 33%).

5.3 Geometrically Regularized HEM

Since the maximum likelihood estimate of a Gaussian is a least-
squares solution, thus non-robust, an ordinary MLE of a Gaussian
Mixture is inherently prone to bias the input signal in a way that
obliterates any subsequent robust reconstruction. Thus, without any
further consideration, a mere statistically optimal fit of M could
place a Gaussian component in a way that blurs the information of
outliers against which we want to robustly reconstruct (Figure 2(a)
and 2(b)). While there are alternative distributions that provide a ro-
bust MLE, like the Laplace distribution, these cannot be expressed
in closed form and would thus require an expensive iterative ap-
proximation. Instead, we improve the robustness of the Gaussian
mixture by adopting a geometric regularization to Hierarchical EM,
which stems from the idea of agglomerative hierarchical clustering
to merge only those clusters which are closest under a given dis-
tance measure. Restricting the set of neighboring components that
are considered for merging to a clustering kernel of finite radius ρ
allows merging the energy mass of close-by Gaussians, while leav-
ing more distant clusters untouched (Figure 2(c)). This results in a
regularized hierarchical EM procedure, which strives for a maxi-
mum likelihood estimate under a reinforced similarity constraint.

Dissimilarity Measure To measure the distance between two
Gaussians Θt and Θs in R

3, we use their Kullback-Leibler diver-
gence

DKL(Θt‖Θs) =
1
2

(

dM (µt,Θs)
2 + tr(Σ−1

s Σt)− 3− ln |Σt|
|Σs|

)

(11)
and define ρ to be the maximum distance DKL(Θt‖Θs)max within
which Θs might merge other components Θt. Although DKL is
a measure of relative entropy, it has an intuitive geometric inter-
pretation, as it accounts for both the scale-invariant Mahalanobis

(a) |M(0)| = 64K (b) |M(2)| = 13K (c) |M(4)| = 8400

Figure 3: Unit-σ-isosurfaces of the mixture Gaussians at the camel
model’s front hooves at different hierarchy levels for α = 2.1. Note
how with successive levels, the main signal components are merged
while the Gaussians modeling outlier information stay unchanged.

distance dM between their centers as well as the deviation of their
principal component directions. Thus, DKL lets large anisotropic
Gaussians continue clustering in the direction of their largest vari-
ance, while smaller Gaussians, possibly representing outlier points,
are restricted to a small clustering radius.

Clustering Kernel Size In contrast to previous authors [Jakob
et al. 2011; Walter et al. 2008], who choose ρ to be the n-th glob-
ally smallest occurring distance between Gaussians, we try to avoid
such a global computation, but rather choose ρ to be a good compro-
mise between clustering efficiency (large, relaxed ρ), and geometric
accuracy (small, restrictive ρ). To provide an intuitive control over
ρ, we suggest a free parameter α, so that ρ = α2/2, which has
a simple interpretation: If two Gaussians have equal covariances,
thus presumably representing similarly oriented geometry, Eq. (11)
reduces α to a simple threshold of their centers’ Mahalanobis dis-
tance. On the other hand, assuming the Gaussians have coinciding
centers, differently oriented covariances suggest a change in orien-
tation of the underlying surface, which α will segregate even more.
In our experiments, α ≈ 2 has proven to give a good balance be-
tween clustering efficiency and accuracy.

Mixture Initialization The initial mixture M(0) needs to be de-
fined in a way that allows α to provide a similar regularization
behavior throughout all levels of the hierarchy. Placing an initial

Gaussian at each point (µ
(0)
i = pi) creates a simple kernel density

estimate of |P |, whose kernel bandwidth defines the extent of the

covariances Σ
(0)
i [Vasconcelos 1998]. A too small bandwidth re-

quires a large α to allow any clustering at all, but also diminishes
the regularization effect in subsequent levels. On the other hand, a
too large bandwidth smooths the signal in advance, thus again in-
creasing the reconstruction bias. To produce a suitable initial den-
sity estimate, we first use a conservative kernel radius r (usually
2 ∼ 3 times a point’s nearest neighbor distance) to compute for
each point an initial covariance matrix Σr , whose shape already re-
flects the local distribution of the n points within the kernel. In a
second step, Σr is scaled down so that its unit-σ-ellipsoid fits its
local nearest neighbor distances. This gives an initial covariance

Σ(0) = Σr
r

σmax
3
√
n
+ c I, (12)

where σmax is the square root of the largest eigenvalue of Σr , I is

the identity matrix, and c is a small trace bias giving Σ(0) a mini-
mum extent. Figure 3 shows the feature-preserving reduction of the
mixture from Figure 1 over different hierarchy levels with regular-
ized HEM.



Figure 4: Continuous attraction of a particle q from a Gaussian
Θs. (a) Density of Θs (blue) and kernel α (yellow) centered in q
lead to (b) a product weight Ωs (black) with infinite integral. (c)
Approximation of α by a sum of 3 Gaussians (green) divides this
integral into 3 product Gaussians Ωsk (black). The sum of their
means, convexly weighted by their integrals, yields (d) the estimated
mean of Ωs, which is the destination point of q intended by the

attraction of Θs. Note the good approximation quality of Ω̂s (d)
compared to Ωs (b), with only 3 Gaussian summands.

6 Continuous LOP in Gaussian Mixtures

In this section we show how to apply the robust LOP operator to a
mixture of Gaussians. By reformulating and evaluating the attrac-
tive force F1, we obtain our accelerated CLOP algorithm.

6.1 Reformulation of the Attraction Force

Eq. (4) concentrates the attractive energies of the potential field Π in
singular points P , and defines F1 as a convex weighted sum over all
points pj with corresponding weights αj . AsM now continuously
distributes these energies according to its density function (7), we
define a corresponding continuous forceF1 by the convex sum over
the integral attraction of each single Gaussian, with convex weights
ws accounting for the Gaussians’ relative point mass:

F1(q,M) =
∑

s

ws

∫

R3

x g(x|Θs)α(x)
∑

s′ ws′
∫

R3 g(x′|Θs′)α(x′) dx′
dx

(13)
where similar to Eq. (6), we define the weight α(x) = θ(δ)/δ, with
δ = ‖x − q‖. Additionally, each point x ∈ R

3 is now weighted
by the Gaussian density g of the corresponding component Θs. As
before, the integral over all weighted contributions is normalized
by the integral over all weights. Figure 4(a) illustrates the spatial
weights induced on the domain R

3 by an anisotropic Gaussian Θs

and a radial kernel α centered at a particle q. Multiplying all occur-
ring weights into a combined weight function

Ωs(x) = wsg(x|Θs)α(x) (14)

defines the attraction step F1 as

F1(q,M) =

∑

s

∫

R3 x Ωs(x) dx
∑

s

∫

R3 Ωs(x) dx
. (15)
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Figure 5: (a) Comparison plot of the original function α (dashed)
and its approximation by a sum of 3 Gaussians (solid) using the
coefficients listed in (b). Note the finite peak of α̂.

Figure 4(b) shows the form of the combined weight function Ωs for
the generating Gaussian Θs and kernel α. Note that the integral in
Eq. (15) is not finite due to a singularity at δ = 0 produced by its
factor δ−1. However, in the basic Weiszfeld’s algorithm as well as
in LOP, a particle spatially coinciding with an input point (i.e., δ =
0) represents a singularity anyway, which is typically accounted for
by removing the point in question, or biasing the denominator δ−1

to some (ǫ + δ)−1 to clamp the point’s energy at δ = 0 to a finite
peak. Following the same reasoning, we circumvent the infinite
integral by approximating the weight function α with a sum of K
Gaussians

α̂(x) =

K
∑

k=1

α̂k(x) =

K
∑

k=1

ŵk ĉk g(x|q, Σ̂k) (16)

(Figure 4(c)), which provides an integrable finite peak at δ = 0
while still exhibiting the characteristic weight falloff of α. Eq. (16)

gives the general d-dimensional formulation for α̂k, where Σ̂k =
σ̂2
kh

2I denotes its covariance, ŵk the (dimension-invariant) weight,

and ĉk = |2πΣ̂k|
1
2 compensates for the dimension-dependent nor-

malization factor of the pdf g. Since the Gaussian kernel is nor-
malized by the LOP support radius h, the coefficients ŵk and σ̂k

of the model function (16) can be fitted by setting h = 1 and con-
sidering only the normalized range δ ∈ [0, 1]. In our experiments,
we observed that a sum of K = 3 Gaussians provides a sufficient
approximation (see Figure 5(a)). The coefficients obtained using
Levenberg-Marquardt optimization are listed in Figure 5(b). Re-

placing α by α̂ gives an estimator Ω̂ approximating the combined
weight function (14) by

Ω̂s(x) = wsg(x|Θs)
K
∑

k=1

α̂k(x) =
K
∑

k=1

Ω̂sk(x). (17)

This comes with a convenient property: Since the product of
two Gaussians is again a Gaussian, Eq. (17) reduces the complete

weight function Ω̂s to a sum of K product Gaussians Ω̂sk, which
we can again interpret as weighted Gaussian pdfs, with weights ωsk

and means µsk. Therefore, Equation (15) can now be expressed in
closed form by

F1(q,M) =

∑

s

∑

k

∫

R3 x Ω̂sk(x) dx
∑

s

∑

k

∫

R3 Ω̂sk(x) dx
=

∑

s,k ωskµsk
∑

s,k ωsk
, (18)

which in the same way that Eq. (4) is a convex sum of 3D points
pj , now becomes a convex combination of the product Gaussians’
means µsk with weights ωsk. By applying the identities for the
integral and the expectation of a Gaussian product [Petersen and
Pedersen 2012], we derive these quantities as follows.



Weight ωsk Using Eq. (17), we obtain ωsk for the general d-
dimensional case as

ωsk =

∫

Rd

Ω̂sk(x)dx = wsŵk ĉk

∫

Rd

g(x|Θs) g(x|Θ̂k)dx

= wsŵk ĉk g(µs|q,Λsk)

= wsŵkσ̂
d
kh

d|Λsk|−
1
2 e−

1
2
(µs−q)TΛ−1

sk
(µs−q)

(19)

where we have introduced the covariance sum Λsk = Σs + Σ̂k.

Mean µsk Evaluating the weighted mean in the numerator of
Eq. (18) gives

ωskµsk =

∫

Rd

x Ω̂sk(x)dx = wsŵk ĉk

∫

Rd

x g(x|Θs) g(x|Θ̂k)dx

= wsŵk ĉkg(µs|q,Λsk)(Σ
−1
s + Σ̂−1

k )−1(Σ−1
s µs + Σ̂−1

k q)

= ωsk(Σ
−1
s + Σ̂−1

k )−1(Σ−1
s µs + Σ̂−1

k q). (20)

Due to the expensive inversions in this formulation, we centralize
the coordinate frame in q to further simplify the mean

µsk = (Σ−1
s + Σ̂−1

k )−1(Σ−1
s (µs − q) + Σ̂−1

k (q − q)) + q

= Σ̂k(Σs + Σ̂k)
−1(µs − q) + q

= σ̂2
kh

2Λ−1
sk (µs − q) + q. (21)

This way, the evaluation of both quantities requires only one matrix
inversion of Λsk, which already produces the term |Λsk|−1 required
in ωsk as side product. The final complete continuous attraction
step is thus given by

F1(q,M) = q +
∑

s,k

σ̂2
kh

2Λ−1
sk (µs − q)

ωsk
∑

s′,k′ ωs′k′

. (22)

6.2 Initial Iteration

As shown in Eq. (2), LOP initializes its particle positions with the
weighted mean of the input points using the weight kernel θ. Its
continuous variant

F (1)
1 (q,M) =

∑

s

∫

R3 xwsg(x|Θs)θ(δ) dx
∑

s

∫

R3 wsg(x|Θs)θ(δ) dx
=

∑

s ω
(0)
s µ

(0)
s

∑

s ω
(0)
s

(23)
is similar to Eq. (13), except that it omits the term δ−1 and can
thus be evaluated only by the weight θ instead of K summands
α̂k. Expressing θ(δ) by a scaled Gaussian pdf cθg(x|q,Σθ), with

Σθ = (h2/32)I and cθ = |2πΣθ|−
1
2 , gives the quantities for the

initial weight and mean as

ω
(0)
s = wscθg(µs|q,Λsθ), µ

(0)
s = 1

32
h2Λ−1

sθ (µs − q) + q, (24)

with covariance sum Λsθ = Σs +Σθ .

7 Weighted CLOP

As the original LOP operator is very sensitive to regions of varying
point densities, Huang et al. [2009] proposed a weighted LOP oper-
ator (WLOP), which normalizes the attractive force (4) over differ-
ently dense regions by adding for each point pj a density-dependent
weight vj = 1 +

∑

j′∈J\{j} θ(‖pj − pj′‖), so that

F1(q, P ) =
∑

j∈J

pj
αj/vj

∑

j′∈J αj′/vj′
. (25)

Figure 6: Point sampling of Lena with point density inverse propor-
tional to image intensity (74K points, left), its corresponding mix-

ture M(4) (5K Gaussians, middle) and CLOP resampling (3700
particles, right). The top row shows the unweighted mixture, result-
ing in an unevenly distributed resampling resembling Lena’s por-
trait, while the bottom mixture shows the desired, balanced particle
distribution built on the initially weighted Gaussians.

This additional weighting can be easily adopted in CLOP, without
even changing its integral formulations in Section 6. Since a Gaus-
sian’s attractive potential is defined by its weight ws, we can encode
the balancing weights vj directly in the Gaussians representing the

pj in the initial mixtureM(0), by altering their initial weights to

w
(0)
j = (vj |P |)−1. (26)

This way, the attraction-determining weights wj of Gaussians that
cluster points in dense regions (large vj) will be relaxed more
strongly than weights in regions of lower density. Applying CLOP
to such a weighted mixture thus results in a continuous equivalent
of the weighted attraction in WLOP. As we can directly accumulate
the sum (25) along with the points’ covariances in the initial kernel
pass (Section 5.3), this weighting can be achieved in CLOP with-
out any additional effort. Figure 6 recreates the Lena demo from
Huang et al. [2009], demonstrating the improved performance of
CLOP when using such weighted mixtures.

8 Accelerating Repulsion

The reformulation and continuous evaluation of F1 shown in the
previous sections accelerates the major part of the computational
load in a LOP iteration (1). As a result, when using a larger num-
ber of particles, the discrete computation of the repulsion forces
becomes the bottleneck. In this section, we address this problem by
two approaches.

Kernel Cutoff. A simple way to accelerate repulsion is to skip the
evaluation of F2 (5) between particles where the relative repulsive
influence is very low. For higher particle counts, this applies to all
particles q with distance & h/2 to a repulsing particle q′, due to
the Gaussian kernel falloff weighting this repulsion exponentially
lower than those from particles closer to q. We have observed that
simply cutting off the repulsion kernel at about half its radius re-
duces the repulsion computation effort by ∼ 75%, while having a
negligible effect on the regularity of the final particle distribution.
Note, however, that such a cutoff is not applicable to the attraction
force, as there it is crucial for the kernel to bridge the gap between
an outlier and the surface it should be projected to.

Repulsion Coherence. Another optimization exploits a coher-
ence in the particles’ repulsive moments F2(q,Q

′) in Eq. (5), which
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Figure 7: (a) Development of the distribution of ∆Ṙ for the Face
model, from first (black) to the last CLOP iteration (blue). (b) Con-
vergence of nearest-neighbor variances σ for unoptimized (gray)
and interleaved repulsion (red). The closeup visually compares the
resulting particle distributions.

we will here denote as Ṙ. We have observed that although the mo-

ment Ṙ of each individual particle q is highly dynamic in both
direction and magnitude, the relative change in the overall sys-

tem is generally low. To measure a particle’s coherence of Ṙ be-
tween two iterations, we examine its relative change of magnitude

∆Ṙ(k) = ‖Ṙ(k)−Ṙ(k−1)‖

‖Ṙ(k−1)‖
, which can also be thought of as a scale-

invariant error measure when using Ṙ(k−1) to approximate Ṙ(k).

Figure 7(a) shows the distribution of ∆Ṙ for the face data set as
it develops over different numbers of CLOP iterations. The graphs

show that the overall error ∆Ṙ is bounded and progressively re-
duces as CLOP converges. After the first iteration, the repulsive
moment of most particles do not deviate more than ∼ 40%, and
with successive iterations, hardly more than 10%. This observa-
tion suggests that, under acceptance of the discussed error, a given

Ṙ(k) can be used as an estimator for Ṙ(k+1) in the next iteration.
Therefore, we are able to reduce the computation effort by another
50% alone by reusing the repulsion vectors every second frame.
We propose to still perform an actual repulsion computation in the
final iteration in case of an odd number of iterations. Figure 7(b)
plots the variance σ of nearest neighbor distances, measuring the
regularity of the point distribution [Huang et al. 2009], for both
unoptimized and interleaved repulsion and different amounts of re-
sampling particles. We observe that with a larger relative number of
particles (20%), an interleaved repulsion update hardly affects the
convergence behavior of σ. On the other hand, a lower number of
particles (6%) allows them to move more freely, leading to an oscil-
lation of σ when correcting the repulsive moment only each second
iteration. However, the band in which it oscillates generally ap-
pears to drop faster, which shows that in addition to a performance
improvement, interleaved repulsion actually leads to a potentially
faster convergence in point regularity.

9 Robust Normal Computation in Mixtures

Having derived a robust projection operator for spatial data to ac-
celerate the L1 point reconstruction, we are interested in a similar
speedup for locally robust normal reconstruction methods [Oztireli
et al. 2009; Zheng et al. 2010]. In this section we show that our
derivation of the continuous attraction in Section 6 can be directly

applied to the domain of unit normals to quickly compute L1-
aligned, unoriented normals for the particles obtained by CLOP.

9.1 Spherical Weiszfeld for Normal Axes

The basic idea of our local L1-based normal alignment is to find
the robust median within a set of unoriented normals (normal axes)
m

∗
j ∈ S

2 of spatially neighboring points pj , which can be roughly
estimated using standard PCA. Similar to how Weiszfeld’s algo-
rithm iteratively approximates the spatial median of noisy points
in R

3, we can use a spherical equivalent to find a spherical me-
dian nopt = argmin

n∈S2

{
∑

j∈J dg(mj ,n)} of these noisy estimated

point normal axes, which minimizes the sum of geodesic distances
dg(mj ,n) = cos−1 〈mj ,n〉max [Banerjee et al. 2005]. Here, mj

represents the unit vector parallel to the (bipolar) axis m∗
j that min-

imizes the geodesic distance dg(mj ,n). Based on the above def-
inition, we can define a spherical Weiszfeld iteration that moves
an initial estimator of a particle normal n towards the median of
neighboring point normal axes m∗

j by

n
(k+1) =

∑

j∈J mjαj
∑

j∈J αj
, αj =

θ(‖pj − q‖)
dg(mj , n̂(k))

(27)

where n̂
(k) denotes the normalized result from the previous itera-

tion, and θ localizes the median projection to point neighbors within
a compact range as before. Projecting the normal of each particle
into the median of a set of point normals mj produces the same
computational effort as the LOP attraction term in Eq. (4). We will
therefore now introduce a fast continuous variant of the spherical
Weiszfeld algorithm, which corresponds to CLOP and operates on a
spherical mixture distribution of the unoriented point normals m∗

j .

9.2 Spherical Mixture Distribution

Similar to how HEM reduces the input points to a mixture of contin-
uous spatial distributions, we reduce the set of estimated point nor-
mals mj to a set of wrapped normal (WN) distributions, which can
be thought of as normal distributions endlessly wrapped around the
unit circle [Mardia and Jupp 2009]. They give an approximate de-
scription of the Mises-Fisher (vMF) distribution, which is a well es-
tablished and exact model for a random variate on S

2. Nevertheless,
considering a hierarchical clustering and doing calculus to obtain
a continuous formulation of a spherical Weiszfeld iteration, vMFs
are hard to handle directly. However, we can sufficiently simulate
a vMF by rotating a one-dimensional wrapped normal distribution
Φ = (µ, ρ) around its mean µ on the unit sphere (Figure 8(a)).
The concentration parameter ρ defines the dispersion of the distri-
bution and measures the mean resultant length ρ = ‖∑j mj‖/n
of a set of n unit vectors mj , increasing in value as the dispersion
decreases. ρ also relates to the variance of the standard normal dis-
tribution by σ2 = −2 log ρ. (In the following, we will use both ρ
and σ2 in our derivations). The pdf of Φ is given by

gw(x|Φ) =
1

σ
√
2π

∞
∑

k=−∞

e−
1
2
( x−µ+2πk

σ
)2 . (28)

For a reasonably concentrated distribution (variance bounded by
2π), the sum representing the infinite wrapping of the distribution
can be sufficiently approximated by the term k = 0 ([Mardia and
Jupp 2009] p. 50), which gives a standard normal distribution. Note
that in Eq. (28), µ and x represent angles on a great circle.

An ordinary HEM-like maximum-likelihood estimate of the set of
Φs on the spherical domain [Banerjee et al. 2005] is not suffi-
cient for our needs, as it neglects the association of normals mj to
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Figure 8: (a) Univariate WN distribution on the S
2, creating a

spherical normal distribution by rotation. (b) Since both αk and µs

are isotropic, their product µsk lies on their common geodesic γs.
(c) Weiszfeld step for nj defined by the weighted mean of all µsk.

points pj required for the spatial localization kernel θ in Eq. (27).
Therefore, instead of computing a spherical mixture independent
from the Gaussian point distributionsM, we assign a distinct WN
Φs to each Gaussian Θs ∈ M, and cluster them along with the
Gaussians during HEM in Section 5, i.e., the normals do not influ-
ence the computed responsibilities which determine the clustering.
This leads to a simple extension of the HEM clustering algorithm:

1. For each point pj , extend the initial mixtureM(0) by an initial

WN distribution Φ
(0)
j = (mj , ρ

(0)), with ρ(0) = 1

2. In the M-Step, update the MLE of Φs using the same spatial
weights ris and w̄s that cluster Θs.

We define the MLE updates for a next level WN Φ
(l+1)
s by

µ(l+1)
s =

∑

i µ
(l)
i riswi

‖
∑

i µ
(l)
i riswi‖

(29)

[σ2
s ]

(l+1)
=

∑

i σ
2
i riswi

∑

i riswi
− 2 log

(
∥

∥

∥

∥

∥

∑

i µ
(l)
i riswi

∑

i riswi

∥

∥

∥

∥

∥

)

, (30)

which is the spherically wrapped isotropic equivalent to the cluster-
ing of Gaussians in Eq. (10). Since the log-argument in Eq. (30) is

the mean resultant length ρ of WN means µ
(l)
i , the complete second

term gives the variance of these µ
(l)
i . Thus, according to Eq. (10),

Eq. (30) defines the MLE of the variance [σ2
s ]

(l+1)
by the weighted

sum of level-l variances and the variance of the level-l means.

9.3 Continuous Spherical Weiszfeld in Mixtures

We will now show that the results for the continuous attraction F1

in Section 6 can be directly applied to formulate a continuous spher-
ical Weiszfeld (CSW) step. CLOP defines the target position of

an iteration step by a convex combination of expectations E[Ω̂sk],

where Ω̂sk are Gaussian weights defined in Eq. (17). On the unit
sphere, those weights are now accordingly defined by

Ω̂sk = ws gw(x|Φs) α̂k(x). (31)

where ws are the mixture coefficients of M as before, gw is the
(one-dimensional) pdf of the WN distribution, and α̂k(x) is defined
as in Eq. (16). The sought quantities µsk and ωsk for computing

E[Ω̂sk] can be obtained by wrapping the Euclidean arrangement of
the involved weights (Figure 4) onto the unit sphere (Figure 8). Al-
though we operate on the 2-dimensional domain S

2, it is sufficient
to evaluate these expectations only along 1-dimensional geodesics,
on which the wrapped normal distributions Φs are defined. Due
to the isotropic symmetry of the weighted Gaussian components
gw and α̂k in Eq. (31), the sought mean µsk always lies on the

geodesic γs through the particle normal n and the mean normal µs

of the s-th mixture component (Figure 8(b)). This allows us to eval-
uate µsk and ωsk using an angular parametrization on γs. This way,
the derived formulations for the mean and weight in Section 6 can
be directly applied to the 2-dimensional unit sphere setting d = 2:

Weight ωsk The covariance sum Λsk defined in Eq. (19) now
simplifies to an isotropic bivariate matrix Λsk = λskI2 with diago-
nal entries λsk = σ2 + σ̂2

kh
2, and ωsk becomes

ωsk = wsŵkσ̂
2
kh

2λ−1
sk e

− 1
2

dg(µs,n)2

λsk . (32)

Mean µsk Similar to the Euclidean case (21), we centralize the
angular parametrization in the particle normal n. Then the relative

mean of the product function Ω̂sk on γs is defined by

dg(µsk,n) = σ̂2
kh

2λ−1
sk dg(µs,n). (33)

Here we can use the same coefficients ŵk and σ̂k as in CLOP (Fig-
ure 5(b)). Since it is not necessary to localize the median seeking
of n on the unit sphere like LOP does in Euclidean space, h can be
safely relaxed to a conservative radius h = π. The actual mean µsk

can now be obtained by interpolating between µs and n on γs, i.e.,
µsk = µst+n(1− t), where Eq. (33) gives the interpolation factor

t =
dg(µsk,n)

dg(µs,n)
=

σ̂2
kh

2

σ2 + σ̂2
kh

2
. (34)

Finally and analogously to the Euclidean case (18), the Weiszfeld
iteration step is given by the weighted sum of the resulting mean
normals µsk (Figure 8(c)), with weights ωsk defined as above.

Timings  

rel. to 

WLOP  

Frame 

Lena Face Camel Garg. sm. Gargoyle 

Model Lena Face Camel Garg. sm. Gargoyle

|P | 74K (74K) 84K (84K) 87K (87K) 77K (78K) 175K (302K)

|M| 5100 8100 7850 10K 32K

|Q| 3700 84K 72K 38K 107K

Iters 50 16 10 20 10

ms WLOP CLOP WLOP CLOP WLOP CLOP WLOP CLOP WLOP CLOP

Init 17 11 9 9 17 17 10 10 9 9

HEM 10 18 20 18 11

F1 161 19 837 77 379 33 423 54 981 167

F2 11 7 677 110 234 30 172 31 405 42

Total 189 47 1523 214 630 100 605 113 1395 229

SU F1 5.55 8.81 7.15 5.88 5.51

SU F2 1.57 6.15 7.80 5.55 9.64

SU Tot. 4.02 7.12 6.30 5.35 6.09

Figure 9: Model statistics and individual timings in ms. Speedups
(SU) are given for attraction (F1) and repulsion (F2) separately, as
well as for the whole CLOP operator compared to a correspond-
ing WLOP GPU implementation. The top graphs give individual
timings of each phase normalized by WLOP total time.



10 Evaluation and Results

10.1 Performance

To achieve interactive reconstruction performance, we have used a
rasterization-based GPU implementation that allows for fast grid-
based neighbor queries [Preiner et al. 2012]. All local kernel op-
erations in the main stages of the algorithm are executed by quad
rasterization on the projected images of the input point set P , the
Gaussian component locations ofM, and the particle set Q, which
are all stored in individual A-buffers. The Gaussian mixture com-
putation, CLOP iterations, optional consecutive CSW (normal esti-
mation) and final rendering are performed in each individual frame
based on the input points P projected into this A-buffer. Note that
since particle positions change over the CLOP iterations, possible
A-buffer overflows commonly slightly reduce the number of total
particles that finally remain for rendering. The particle counts |Q|
listed in Figure 9 therefore always denote the average amount over
all iterations. To be able to fully assess the performance of our
system, we do not currently exploit any frame-to-frame coherence.
However, common temporal-coherence approaches could acceler-
ate our system even further [Liao et al. 2013]. Note that for normal
estimation, we simply orient the normals towards the camera when
rendering the reconstructed point cloud. Obtaining globally con-
sistent normals would require global computations like orientation
propagation [Huang et al. 2009], which are too expensive for an
interactive setting.

All results were produced on a PC with an Intel i7 4470K 3.5 GHz
CPU and NVIDIA GeForce GTX TITAN GPU. A framebuffer res-
olution of 1700×880 was used in all our performance tests and the
results shown in the video. Fig. 9 summarizes statistics and perfor-
mance measures for the 5 tested models (Lena, Face, Camel, Gar-
goyle and small Gargoyle) and plots the relative speedup of CLOP
over WLOP. The given point set cardinalities |P | denote the points
left to operate on after A-buffer projection. The original number of
input points is given in brackets. The performance numbers include
individual timings for creating the mixture model (HEM) and eval-
uating the continuous attraction compared to the discrete attraction
(F1), as well as the accelerated repulsion compared to the full repul-
sion computation (F2). The Camel model as shown in Figure 1 was
generated with a virtual scanning framework [Berger et al. 2013],
using 18 individual scans. The parameters have been set to gener-
ate a realistic but relatively high level of noise and outliers. Please
refer to the supplemental material for details. All results were pro-
duced with weighting enabled (WLOP vs. weighted CLOP) since it
doesn’t incur additional costs on either side. We observe an overall
speedup of up to 7 times the WLOP performance, while produc-
ing a practically indistinguishable reconstruction. Fig. 10 gives a

(a) Input (b) WLOP (1523 ms) (c) CLOP (214 ms)

Figure 10: (a) Small-kernel splat reconstruction on the Face model
showing heavy registration errors. (b) After WLOP (16 iterations).
(c) After CLOP with 10% Gaussian components.
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Figure 11: Reconstruction error on two noisy registered scans
(a),(d). Heatmaps compare the error between (b),(e) the WLOP
(#particles = #points, 20 iterations) and (c),(f) CLOP reconstruc-
tion. Kernel sizes h are given in % of the BB diagonal. For both
cases, the detail lenses and the respective error distribution func-
tions (g),(h) demonstrate the superior accuracy of our method.

visual comparison for the noisy face model, where CLOP outper-
forms WLOP by a factor of 7. The results show that even when re-
constructing the model with a large number of particles (about the
same as the input model), only a low number of Gaussians (∼ 10%)
are required to represent the input point cloud, leading to significant
speedups in the attraction evaluation (up to a factor of 9). See also
the accompanying video for further results and comparisons.

10.2 Reconstruction Quality

In this section, we analyze the reconstruction quality of our method
in depth and evaluate its accuracy against the original WLOP al-
gorithm. To allow for an accurate evaluation that is not biased due
to the A-buffer based particle loss described above, we use an ex-
act reference implementation for all accuracy measurements. We
will show that although our approach runs several times faster than
its discrete counterpart, its continuous nature is able to produce a
reconstruction of comparable or even better accuracy.

Accuracy. We study the reconstruction error of CLOP vs. WLOP
on two models exhibiting different characteristics (Fig. 11). To pro-
vide exact reference models for measurement, we used the virtual
scanning framework by Berger et al. [2013]. Both models were
resampled by 16 virtual scans exhibiting a moderate amount of ad-
ditive Gaussian noise. These were registered using locally weighted
ICP [Brown and Rusinkiewicz 2007] using a realistic amount of ro-
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Figure 12: (a) Point sampling of a radially symmetric ripple function, containing sharp edges of various angles, and exhibiting Gaussian
noise increasing from 0 to σmax with the angle of rotation. We compare the reconstruction error of WLOP (b) and (c)-(e) CLOP at various
α and mixture reductions. Heat map colors relate to error amplitudes. Note that with a suggested α = 2, we are able to achieve an overall
lower approximation error than with WLOP.

tational misalignment, which is a common source of outliers. Note
that we generated a smaller version of the Gargoyle for the perfor-
mance tests in Section 10.1 using the same parameters with lower
scanner resolution. The left column in Figure 11 shows the result-
ing noisy input point clouds, the middle and right columns give the
WLOP and CLOP reconstructions. Splat colors indicate particle er-
rors E(q) = 〈q−p,Np〉, measuring the distance of q to the tangent
plane in the nearest reference surface point p, with Np being its nor-
mal. Interestingly, the error heat maps and detail lenses indicate a
generally superior behavior of our method over WLOP, especially
at regions of high curvature. Only in few isolated regions like at
the Gargoyle’s ear, the clustering between very close-by misaligned
scans leads to a slightly higher error than using WLOP. Fig. 11(g)
and 11(h) plot the error density functions (particle error on abscissa
vs. density on ordinate) of CLOP against WLOP and the input data.
Both graphs show that CLOP produces more low-error particles and
less high-error particles than WLOP, thus providing an overall bet-
ter reconstruction quality.

A detailed error analysis for various cases is given in Figure 12.
Here we use a synthetic data set (Fig. 12(a)) designed to show
varying levels of noise as well as sharp and smooth features. Fig-
ure 12(b) shows the WLOP reconstruction after 20 iterations. As
expected, the error is maximal at the sharp edges. The presence of
noise in the data leads to a more noisy particle alignment, although
only at a very subtle level. However, even in the region that has
no noise in the input, WLOP produces homogeneous regions of er-
ror in the curved trenches of the function. This is because particles
are repulsed in tangential direction instead of along the curvature of
the surface, and thus is less visible as the surface gets more planar.
Figure 12(c) shows the corresponding CLOP result at reasonable
parameters. Compared to WLOP, we observe a clear reduction of
the error regions in both the flat trenches and the sharp edges (espe-
cially apparent at the conic apex) of the function. We suspect that
CLOP’s overall better quality can be attributed to the continuous
attractive energies, which provide a smoother and thus more robust
description of the geometry than the singular attractive points used
by WLOP. This might positively affect the stability of the attrac-
tive particle movements against the perturbing repulsion forces, and
thus allow for a more controlled and overall better optimization.

Effect of Clustering. As our method relies on a reduced repre-
sentation of the input data, i.e., a Gaussian mixture, we are inter-
ested in the effect of this reduction on reconstruction quality, espe-
cially in the presence of high frequencies. We thus investigate the
reconstruction error for different levels of compression. Figure 12
(c) to (e) show CLOP reconstructions (same kernel size and itera-
tion count) for increasing mixture compression (increasing α at 8

HEM levels). While for α = 2 we have observed an improved
accuracy over WLOP, the quality drops with successive levels of
compression. Figure 12(e) shows that choosing an extreme mix-
ture compression still achieves moderate reconstruction quality in
noise-free regions, but breaks down for stronger noise levels, lead-
ing to a corrupt reconstruction with large errors and irregularities
in the particle distribution (holes). The insets depict the Gaussian
mixture at a sharp edge (illustrated by 1-σ-isoellipsoids), and show
that a sufficiently strict HEM regularization (i.e., small α) produces
almost no signal blurring.

The reduction of the Gaussian mixture is controlled by the regu-
larization α and the number of clustering levels. Figure 13 plots
the actual compression rates (abscissa) for the Gargoyle and the
Ripple data set against the mean reconstruction error (ordinate, in
% of bounding box diagonal) for different values of α and HEM
levels. The plots show that in general, the mean error lies clearly
below the WLOP error level for reasonable compression rates, and
only starts to increase for strong compressions, depending on the
complexity of the model: For the Gargoyle, this happens at 80%,
while the ripple model, containing more smooth and flat regions,
can be compressed up to 94% without significantly increasing the
reconstruction error. We also see that for a given compression rate,
lower values for α require more HEM clustering levels to achieve
the same compression, but for α . 2.2, also bound the compression
so that the region of rapidly increasing error is avoided. Lower α
also produces a lower error at a given mixture size due to a stronger
regularization. For these reasons we recommend to use an α ≈ 2.0.
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Figure 13: Mean error development with increasing mixture com-
pression, given by various values of α and 1−9 levels. For each α,
the marker lines indicate the level where the additional compres-
sion falls below 2.5%. The dashed line gives the corresponding
WLOP error (above plot range in (b)).
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Figure 14: (a) Sampling regularity σ of the Gargoyle model with
increasing levels of compression. (b) WLOP on a sub-sampled Gar-
goyle with same parameters and reduction rate as in Fig. 11(c).

(a) Input (39.5K) (b) CLOP (198K) (c) WLOP (198K)

Figure 15: Sparse Gargoyle (a) upsampled to 500% of the input
point count, (b) using CLOP (h = 2.6), (c) using WLOP (h = 2.6
and 8.7). Lenses show splat distributions and surface details for
the input, CLOP upsampling, and large-kernel WLOP upsampling.
Kernel sizes h are given in % of the bounding box diagonal.

Number of HEM Levels. For a given α, we want to use enough
HEM levels to achieve sufficient compression, but also not waste
performance on additional levels that do not substantially reduce
the mixture further. Figure 13 shows that different input models
show different compression potential. To take this into account,
we abort clustering when the additional compression afforded by
a level falls below a given threshold. The markers at the abscis-
sas indicate the final mixture compression for a threshold of 2.5%
additional compression.

Point Regularity. In all our experiments, the continuous formu-
lation of the attractive energies has shown to provide an improved
sampling regularity of the resulting particles, which we measure by
the variance σ of nearest neighbor distances [Huang et al. 2009].
Figure 14(a) plots σ for different α and 1 − 8 HEM levels for the
Gargoyle from Figure 11(c). In contrast to the regularity achieved
by WLOP (dashed line), the continuous attractive energies allow
for smoother particle movements, resulting in a notably lower σ up
to a critical point of compression (α = 3), where the smooth en-
ergy distribution cannot be sufficiently described by the remaining
Gaussians anymore. Note that this regularity improvement is inde-
pendent of the one achieved by interleaved repulsion (Section 8),
which we have activated for both the CLOP and WLOP evaluation.

Usable Amount of Particles. As shown by Lipman et al. [2007],
the original LOP operator is problematic when using more parti-
cles than there are points in the model. If a given kernel contains
too few attractive points to sufficiently describe a smooth energy
density, particles tend to collapse into irregular clusters. A larger

(a) PCA normals (b) CSW (h = 1.1) (c) CSW (h = 2.2)

(d) Quality of normals with increasing mixture compression (h = 1.1)

Figure 16: CSW on the Daratech model. (a) Splat normals using
local PCA, (b) and (c) CSW normals with different kernel sizes. (d)
Shows the quality reduction of the normals with increasing com-
pression of the spherical mixture (given in % of input model size).

kernel dampens this effect, but also comes with stronger smooth-
ing. Therefore, the idea of accelerating WLOP by subsampling
the input point set also reduces the usable amount of particles.
Fig. 11(c) shows the CLOP reconstruction of the Gargoyle (303K
input points, 303K particles) using 35K Gaussians. Fig. 14(b)
gives the WLOP result on the model after subsampling to 35K
points. Using the same particle count and kernel size as CLOP,
WLOP fails to obtain a sufficient sampling regularity for a faithful
reconstruction. In contrast, CLOP allows using much more parti-
cles than input points, and can therefore even be used to upsample
a point cloud. E.g., based on a sparse sampling of the Gargoyle
model with 39.5K points (Fig. 15(a)), we used CLOP to project
198K particles (500%) into its Gaussian mixture with 22K com-
ponents, using a sufficiently small kernel bandwidth (Fig. 15(b)).
A similar low-bandwidth upsampling using WLOP leads to parti-
cle collapses, while a sufficiently larger bandwidth destroys fine
features (Fig. 15(c)).

Robust Normals. Finally, we investigate the effect of different
CSW kernel sizes on the resulting alignment of the splat normals
(Section 9.3). A common normal computation method is local tan-
gent plane fitting using PCA [Hoppe et al. 1992], which is quick
enough to be suitable for online reconstruction [Preiner et al. 2012],
but suffers from typical smoothing artifacts. Figure 16(a) shows
the CLOP result of the Daratech data set from Figure 11(f) with
PCA normals (surface colors correspond to splat normals). Note
the rounding of the model’s sharp edges. Figure 16(b) illustrates
the result after applying 13 iterations of the continuous spheri-
cal Weiszfeld steps on the CLOP result, where |M| = 17.8%
of the input point cloud. We used a manually tuned kernel of
1.1% of the BB diagonal, which optimally reconstructs the fine
bracings at the model’s front and backside. In contrast, a kernel
of twice this size flattens subtle features, but also robustly aligns
splats on more significant edges more faithfully (Figure 16(c)). Fig-
ure 16(d) shows details of the model for various levels of compres-
sion (α = 1.5, 2.0, 2.5, 5 levels). As in spatial Continuous LOP,
an increasing mixture compression leads to a successive reduction
in quality. An optimal screen-space reconstruction of the Darat-
ech model with 155K points (135K after screen-space projection)
requires 124 ms for CLOP + 56 ms for CSW (with kernel size
h = 1.1% for both passes). Figure 17 shows a robust online nor-
mal alignment of a Kinect stream using CSW.



Figure 17: Screen capture during online reconstruction of a Kinect
stream (left). L2-based splat reconstruction (middle) results in typ-
ical smoothing artifacts, while the proposed CSW normal recon-
struction (right) faithfully reconstructs sharp features.

11 Limitations

Like its discrete variants, CLOP is a kernel-based operator, and
therefore inherits their kernel-related characteristics: larger band-
widths are required in cases of stronger noise, which then leads to
stronger smoothing. Since CLOP exploits the fact that dense re-
gions of low curvature can be compressed to very few Gaussians
without loss of geometric information, the compression potential,
and thus the achievable speedup, is always bound by the geomet-
rical complexity of the input data (see Figure 13). As discussed in
Section 5.3, the choice of the regularization term α is a trade-off
between clustering efficiency and reconstruction quality. In order
to maintain high accuracy, there is a bound on suitable values for
the regularization term α, and thus also on the possible clustering
speed. However, the resulting quality also depends on a proper
mixture initialization bandwidth as mentioned in Section 5.3. The
initializing kernel radius r has to be large enough (above noise
level) to give the initial Gaussians proper orientation, but should
be small enough to prevent from blurring the data in the first place.
Currently, we use a density-adaptive radius r, which showed satis-
factory results. However, in input data of strongly varying noise,
a more flexible, locally noise-aware initialization could probably
produce an even better reconstruction quality.

12 Conclusions and Future Work

We have introduced a novel surface reconstruction technique which
applies the robust Weighted LOP operator to a continuous repre-
sentation of a point set. We showed how to regularize the hierar-
chical EM algorithm to cluster the point set to a Gaussian mixture
in a geometry-preserving manner, and derived an analytic formu-
lation of LOP’s attraction forces for this much more compact rep-
resentation. This way, our method runs several time faster than the
original discrete variant, while being able to produce comparable or
even superior accuracy for reasonable regularization terms (α ≈ 2).
Furthermore, CLOP provides an overall better sampling regularity,
does not introduce constraints in the number of resampling parti-
cles (unlike subsampling approaches based on discrete LOP), and
is even capable of point-cloud upsampling. We have also shown
that our continuous formulation can be applied to the spherical do-
main for efficient robust feature-preserving normal estimation.

This paper has shown that a continuous reformulation of point-
particle forces is highly versatile. In the future, we therefore want
to generalize and apply it to a range of discrete algorithms.
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Appendix: HEM Algorithm Outline

Algorithm 1 outlines the complete hierarchical EM procedure for
computing a mixtureM describing both the point distribution (by
Gaussians Θs) and the spatially associated distribution of normals
(by WN distributions Φs).

Algorithm 1: Outline of the HEM computation of mixtureM
including both spatial and spherical components.

input : point set P = {pj}j∈J , levels lmax, regularization α

output: mixtureM(lmax) = {ws,Θs,Φs}
1 foreach j ∈ J do in parallel
2 r ← α0· NearestNeighborDist(pj); //Section 5.3

3 (Σ
(0)
j , vj)← KernelCovDensity(pj , r); //Eq. (12)/Sec. 7

4 mj ← MinEigenVec (Σ
(0)
j );

5 w
(0)
j ← (vj |P |)−1; //Eq. (26)

6 Θ
(0)
j ← (pj ,Σ

(0)
j );

7 Φ
(0)
j ← (mj , ρ

(0)); //Section 9.2

8 end

9 M(0) ← {w(0)
j ,Θ

(0)
j ,Φ

(0)
j };

10 for l← 0 to lmax − 1 do

11 S ← RandomIndexSubset (M(l), π);
12 foreach s ∈ S do in parallel

13 I ← {i |DKL(Θ
(l)
i ||Θ

(l+1)
s ) < α2/2}; //Eq. (11)

14 {ris}i∈I ← Responsib (Θ
(l+1)
s , Θ

(l)
i ); //Eq. (8)+(9)

15 (ws,Θs,Φs)
(l+1) ← UpdateMLE (M(l),{ris}i∈I );

16 //Eq. (10),(29),(30)

17 end

18 M(l+1) ← {w(l+1)
s ,Θ

(l+1)
s ,Φ

(l+1)
s } ∪ Orphans(M(l));

19 end

For each point in parallel (Line 1), we first determine a conservative
radius r in Line 2 (α0 = 2 ∼ 3). Using this radius, we perform
a kernel-accumulation pass (Line 3), computing both the point’s

initial covariance Σ
(0)
j and its local density weight vj . The ini-

tial estimator for its surface normal mj is then extracted using the

smallest eigenvector of Σ
(0)
j (Line 4). These quantities define the

initial weight w
(0)
j , Gaussian Θ

(0)
j and WN Φ

(0)
j assigned to the j-

th point (Lines 5-7), which make up the initial mixtureM(0) (Line
9). Each iteration of the following hierarchical clustering loop (Line
10) represents an EM step fitting a reduced set of parent compo-

nents {Θ|Φ}(l+1)
s for the next level to the current set of child com-

ponents {Θ|Φ}(l)i . Here, the i-th WN component Φi is always cou-
pled to the i-th spatial component Θi when clustering. The parent
set is initialized by randomly selecting elements from the current

mixtureM(l) (Line 11), where we recommend a selection proba-
bility π ≈ 1/3. For each such parent (Line 12) in parallel, Line 13
applies the regularization constraint α (Section 5.3) to select the in-
dex set I of child components it is responsible for and thus allowed

to merge. Note that the centers µ
(l)
i of all child components can

be found within a conservative ball with radius α · σmax around

µ
(l+1)
s , σmax being the root of the largest eigenvalue of Σ

(l+1)
s .

Line 14 computes the responsibilities ris of the s-th component
for its selected set of children, which are then used to update the
maximum-likelihood estimate of the parent’s parameters (Line 15).
Finally, the function Orphans in Line 18 selects child components
that are not within the responsibility set I of any parent. They have

to be taken along to the next level’s mixtureM(l+1) together with
the updated parent components in S.


